for Journals by Title or ISSN
for Articles by Keywords

Publisher: Springer-Verlag (Total: 2354 journals)

 A  B  C  D  E  F  G  H  I  J  K  L  M  N  O  P  Q  R  S  T  U  V  W  X  Y  Z  

We no longer collect new content from this publisher because the publisher has forbidden systematic access to its RSS feeds.
Journal Cover Plant Molecular Biology
  [SJR: 1.915]   [H-I: 137]   [9 followers]  Follow
   Hybrid Journal Hybrid journal (It can contain Open Access articles)
   ISSN (Print) 1573-5028 - ISSN (Online) 0167-4412
   Published by Springer-Verlag Homepage  [2354 journals]
  • RNA-seq analysis provides insight into reprogramming of culm development
           in Zizania latifolia induced by Ustilago esculenta
    • Authors: Zhi-Dan Wang; Ning Yan; Zheng-Hong Wang; Xiao-Huan Zhang; Jing-Ze Zhang; Hui-Min Xue; Li-Xia Wang; Qi Zhan; Ying-Ping Xu; De-Ping Guo
      Pages: 533 - 547
      Abstract: Key message We report a transcriptome assembly and expression profiles from RNA-Seq data and identify genes responsible for culm gall formation in Zizania latifolia induced by Ustilago esculenta. The smut fungus Ustilago esculenta can induce culm gall in Zizania latifolia, which is used as a vegetable in Asian countries. However, the underlying molecular mechanism of culm gall formation is still unclear. To characterize the processes underlying this host-fungus association, we performed transcriptomic and expression profiling analyses of culms from Z. latifolia infected by the fungus U. esculenta. Transcriptomic analysis detected U. esculenta induced differential expression of 19,033 and 17,669 genes in Jiaobai (JB) and Huijiao (HJ) type of gall, respectively. Additionally, to detect the potential gall inducing genes, expression profiles of infected culms collected at −7, 1 and 10 DAS of culm gall development were  analyzed. Compared to control, we detected 8089 genes (4389 up-regulated, 3700 down-regulated) and 5251 genes (3121 up-regulated, 2130 down-regulated) were differentially expressed in JB and HJ, respectively. And we identified 376 host and 187 fungal candidate genes that showed stage-specific expression pattern, which are  possibly responsible for gall formation at the initial and later phases, respectively. Our results indicated that cytokinins play more prominent roles in regulating gall formation than do auxins. Together, our work provides general implications for the understanding of gene regulatory networks for culm gall development in Z. latifolia, and potential targets for genetic manipulation to improve the future yield   of  this crop.
      PubDate: 2017-12-01
      DOI: 10.1007/s11103-017-0658-9
      Issue No: Vol. 95, No. 6 (2017)
  • Arabidopsis KHZ1 and KHZ2, two novel non-tandem CCCH zinc-finger and
           K-homolog domain proteins, have redundant roles in the regulation of
           flowering and senescence
    • Authors: Zongyun Yan; Jianheng Jia; Xiaoyuan Yan; Huiying Shi; Yuzhen Han
      Pages: 549 - 565
      Abstract: Key message The two novel CCCH zinc-finger and K-homolog (KH) proteins, KHZ1 and KHZ2, play important roles in regulating flowering and senescence redundantly in Arabidopsis. The CCCH zinc-finger proteins and K-homolog (KH) proteins play important roles in plant development and stress responses. However, the biological functions of many CCCH zinc-finger proteins and KH proteins remain uncharacterized. In Arabidopsis, KHZ1 and KHZ2 are characterized as two novel CCCH zinc-finger and KH domain proteins which belong to subfamily VII in CCCH family. We obtained khz1, khz2 mutants and khz1 khz2 double mutants, as well as overexpression (OE) lines of KHZ1 and KHZ2. Compared with the wild type (WT), the khz2 mutants displayed no defects in growth and development, and the khz1 mutants were slightly late flowering, whereas the khz1 khz2 double mutants showed a pronounced late flowering phenotype. In contrast, artificially overexpressing KHZ1 and KHZ2 led to the early flowering. Consistent with the late flowering phenotype, the expression of flowering repressor gene FLC was up-regulated, while the expression of flowering integrator and floral meristem identity (FMI) genes were down-regulated significantly in khz1 khz2. In addition, we also observed that the OE plants of KHZ1 and KHZ2 showed early leaf senescence significantly, whereas the khz1 khz2 double mutants showed delayed senescence of leaf and the whole plant. Both KHZ1 and KHZ2 were ubiquitously expressed throughout the tissues of Arabidopsis. KHZ1 and KHZ2 were localized to the nucleus, and possessed both transactivation activities and RNA-binding abilities. Taken together, we conclude that KHZ1 and KHZ2 have redundant roles in the regulation of flowering and senescence in Arabidopsis.
      PubDate: 2017-12-01
      DOI: 10.1007/s11103-017-0667-8
      Issue No: Vol. 95, No. 6 (2017)
  • ptxD gene in combination with phosphite serves as a highly effective
           selection system to generate transgenic cotton ( Gossypium hirsutum L.)
    • Authors: Devendra Pandeya; LeAnne M. Campbell; Eugenia Nunes; Damar L. Lopez-Arredondo; Madhusudhana R. Janga; Luis Herrera-Estrella; Keerti S. Rathore
      Pages: 567 - 577
      Abstract: Key message This report demonstrates the usefulness of ptxD/phosphite as a selection system that not only provides a highly efficient and simple means to generate transgenic cotton plants, but also helps address many of the concerns related to the use of antibiotic and herbicide resistance genes in the production of transgenic crops. Two of the most popular dominant selectable marker systems for plant transformation are based on either antibiotic or herbicide resistance genes. Due to concerns regarding their safety and in order to stack multiple traits in a single plant, there is a need for alternative selectable marker genes. The ptxD gene, derived from Pseudomonas stutzeri WM88, that confers to cells the ability to convert phosphite (Phi) into orthophosphate (Pi) offers an alternative selectable marker gene as demonstrated for tobacco and maize. Here, we show that the ptxD gene in combination with a protocol based on selection medium containing Phi, as the sole source of phosphorus (P), can serve as an effective and efficient system to select for transformed cells and generate transgenic cotton plants. Fluorescence microscopy examination of the cultures under selection and molecular analyses on the regenerated plants demonstrate the efficacy of the system in recovering cotton transformants following Agrobacterium-mediated transformation. Under the ptxD/Phi selection, an average of 3.43 transgenic events per 100 infected explants were recovered as opposed to only 0.41% recovery when bar/phosphinothricin (PPT) selection was used. The event recovery rates for nptII/kanamycin and hpt/hygromycin systems were 2.88 and 2.47%, respectively. Molecular analysis on regenerated events showed a selection efficiency of ~ 97% under the ptxD/Phi system. Thus, ptxD/Phi has proven to be a very efficient, positive selection system for the generation of transgenic cotton plants with equal or higher transformation efficiencies compared to the commonly used, negative selection systems.
      PubDate: 2017-12-01
      DOI: 10.1007/s11103-017-0670-0
      Issue No: Vol. 95, No. 6 (2017)
  • High throughput transcriptome analysis of coffee reveals prehaustorial
           resistance in response to Hemileia vastatrix infection
    • Authors: Juan Carlos Florez; Luciana Souto Mofatto; Rejane do Livramento Freitas-Lopes; Sávio Siqueira Ferreira; Eunize Maciel Zambolim; Marcelo Falsarella Carazzolle; Laércio Zambolim; Eveline Teixeira Caixeta
      Pages: 607 - 623
      Abstract: Key message We provide a transcriptional profile of coffee rust interaction and identified putative up regulated resistant genes Coffee rust disease, caused by the fungus Hemileia vastatrix, is one of the major diseases in coffee throughout the world. The use of resistant cultivars is considered to be the most effective control strategy for this disease. To identify candidate genes related to different mechanism defense in coffee, we present a time-course comparative gene expression profile of Caturra (susceptible) and Híbrido de Timor (HdT, resistant) in response to H. vastatrix race XXXIII infection. The main objectives were to obtain a global overview of transcriptome in both interaction, compatible and incompatible, and, specially, analyze up-regulated HdT specific genes with inducible resistant and defense signaling pathways. Using both Coffea canephora as a reference genome and de novo assembly, we obtained 43,159 transcripts. At early infection events (12 and 24 h after infection), HdT responded to the attack of H. vastatrix with a larger number of up-regulated genes than Caturra, which was related to prehaustorial resistance. The genes found in HdT at early hours were involved in receptor-like kinases, response ion fluxes, production of reactive oxygen species, protein phosphorylation, ethylene biosynthesis and callose deposition. We selected 13 up-regulated HdT-exclusive genes to validate by real-time qPCR, which most of them confirmed their higher expression in HdT than in Caturra at early stage of infection. These genes have the potential to assist the development of new coffee rust control strategies. Collectively, our results provide understanding of expression profiles in coffee—H. vastatrix interaction over a time course in susceptible and resistant coffee plants.
      PubDate: 2017-12-01
      DOI: 10.1007/s11103-017-0676-7
      Issue No: Vol. 95, No. 6 (2017)
  • Hybrid incompatibilities in interspecific crosses between tetraploid wheat
           and its wild diploid relative Aegilops umbellulata
    • Authors: Moeko Okada; Kentaro Yoshida; Shigeo Takumi
      Pages: 625 - 645
      Abstract: Key message Hybrid abnormalities, severe growth abortion and grass-clump dwarfism, were found in the tetraploid wheat/Aegilops umbellulata hybrids, and the gene expression changes were conserved in the hybrids with those in other wheat synthetic hexaploids. Aegilops umbellulata Zhuk., a diploid goatgrass species with a UU genome, has been utilized as a genetic resource for wheat breeding. Here, we examine the reproductive barriers between tetraploid wheat cultivar Langdon (Ldn) and various Ae. umbellulata accessions by conducting interspecific crossings. Through systematic cross experiments, three types of hybrid incompatibilities were found: seed production failure in crosses, hybrid growth abnormalities and sterility in the ABU hybrids. Hybrid incompatibilities were widely distributed over the entire range of the natural species, and in about 50% of the cross combinations between tetraploid Ldn and Ae. umbellulata accessions, ABU F1 hybrids showed one of two abnormal growth phenotypes: severe growth abortion (SGA) or grass-clump dwarfism. Expression of the shoot meristem maintenance-related and cell cycle-related genes was markedly repressed in crown tissues of hybrids showing SGA, suggesting dysfunction of mitotic cell division in the shoot apices. The grass-clump dwarf phenotype may be explained by down-regulation of wheat APETALA1-like MADS box genes, which act as flowering promoters, and altered expression in crown tissues of the miR156/SPLs module, which controls tiller number and branching. These gene expression changes in growth abnormalities were well conserved between the Ldn/Ae. umbellulata plants and interspecific hybrids from crosses of Ldn and wheat D-genome progenitor Ae. tauschii.
      PubDate: 2017-12-01
      DOI: 10.1007/s11103-017-0677-6
      Issue No: Vol. 95, No. 6 (2017)
  • Correction to: CYP79 P450 monooxygenases in gymnosperms: CYP79A118 is
           associated with the formation of taxiphyllin in Taxus baccata
    • Authors: Katrin Luck; Qidong Jia; Meret Huber; Vinzenz Handrick; Gane Ka-Shu Wong; David R. Nelson; Feng Chen; Jonathan Gershenzon; Tobias G. Köllner
      Pages: 647 - 647
      Abstract: Due to an unfortunate turn of events, the funding note for Open Access publication was not properly provided in the original publication. Hence, the original article has been corrected. The opening line of the Acknowledgement section should read:
      PubDate: 2017-12-01
      DOI: 10.1007/s11103-017-0674-9
      Issue No: Vol. 95, No. 6 (2017)
  • Kiwifruit SVP2 controls developmental and drought-stress pathways
    • Abstract: Key message Genome-wide targets of Actinidia chinensis SVP2 confirm roles in ABA- and dehydration-mediated growth repression and reveal a conservation in mechanism of action between SVP genes of taxonomically distant Arabidopsis and a woody perennial kiwifruit. The molecular mechanisms underlying growth and dormancy in woody perennials are largely unknown. In Arabidopsis, the MADS-box transcription factor SHORT VEGETATIVE PHASE (SVP) plays a key role in the progression from vegetative to floral development, and in woody perennials SVP-like genes are also proposed to be involved in controlling dormancy. During kiwifruit development SVP2 has a role in growth inhibition, with high-chill kiwifruit Actinidia deliciosa transgenic lines overexpressing SVP2 showing suppressed bud outgrowth. Transcriptomic analyses of these plants suggests that SVP2 mimics the well-documented abscisic acid (ABA) effect on the plant dehydration response. To corroborate the growth inhibition role of SVP2 in kiwifruit development at the molecular level, we analysed the genome-wide direct targets of SVP2 using chromatin immunoprecipitation followed by high-throughput sequencing in kiwifruit A. chinensis. SVP2 was found to bind to at least 297 target sites in the kiwifruit genome, and potentially modulates 252 genes that function in a range of biological processes, especially those involved in repressing meristem activity and ABA-mediated dehydration pathways. In addition, our ChIP-seq analysis reveals remarkable conservation in mechanism of action between SVP genes of taxonomically distant plant species.
      PubDate: 2017-12-08
  • A specific amino acid residue in the catalytic site of dandelion
           polyphenol oxidases acts as ‘selector’ for substrate specificity
    • Abstract: Key message Successful site-directed mutagenesis combined with in silico modeling and docking studies for the first time offers experimental proof of the role of the ‘substrate selector’ residue in plant polyphenol oxidases. The plant and fungi enzymes responsible for tissue browning are called polyphenol oxidases (PPOs). In plants, PPOs often occur as families of isoenzymes which are differentially expressed, but little is known about their physiological roles or natural substrates. In a recent study that explored these structure–function relationships, the eleven known dandelion (Taraxacum officinale) PPOs were shown to separate into two different phylogenetic groups differing in catalytic cavity architecture, kinetic parameters, and substrate range. The same study proposed that the PPOs’ substrate specificity is controlled by one specific amino acid residue positioned at the entrance to the catalytic site: whereas group 1 dandelion PPOs possess a hydrophobic isoleucine (I) at position HB2+1, group 2 PPOs exhibit a larger, positively charged arginine (R). However, this suggestion was only based on bioinformatic analyses, not experiments. To experimentally investigate this hypothesis, we converted group 1 ToPPO-2 and group 2 ToPPO-6 into PPO-2-I244R and PPO-6-R254I, respectively, and expressed them in E. coli. By performing detailed kinetic characterization and in silico docking studies, we found that replacing this single amino acid significantly changed the PPO’s substrate specificity. Our findings therefore proof the role of the ‘substrate selector’ in plant PPOs.
      PubDate: 2017-12-07
  • iTRAQ-based comparative proteomic analysis provides insights into somatic
           embryogenesis in Gossypium hirsutum L.
    • Abstract: Key message iTRAQ based proteomic identified key proteins and provided new insights into the molecular mechanisms underlying somatic embryogenesis in cotton. Somatic embryogenesis, which involves cell dedifferentiation and redifferentiation, has been used as a model system for understanding molecular events of plant embryo development in vitro. In this study, we performed comparative proteomics analysis using samples of non-embryogenic callus (NEC), embryogenic callus (EC) and somatic embryo (SE) using the isobaric tags for relative and absolute quantitation (iTRAQ) technology. In total, 5892 proteins were identified amongst the three samples. The majority of these proteins (93.4%) were found to have catalytic activity, binding activity, transporter activity or structural molecular activity. Of these proteins, 1024 and 858 were differentially expressed in NEC versus EC and EC versus SE, respectively. Compared to NEC, EC had 452 and 572 down- and up-regulated proteins, respectively, and compared to EC, SE had 647 and 221 down- and up-regulated proteins, respectively. KEGG (Kyoto Encyclopedia of Genes and Genomes) analysis indicated that genetic information transmission, plant hormone transduction, glycolysis, fatty acid biosynthesis and metabolism, galactose metabolism were the top pathways involved in somatic embryogenesis. Our proteomics results not only confirmed our previous transcriptomic results on the role of the polyamine metabolic pathways and stress responses in cotton somatic embryogenesis, but identified key proteins important for cotton somatic embryogenesis and provided new insights into the molecular mechanisms underlying somatic embryogenesis in cotton.
      PubDate: 2017-12-06
  • Suppression of wheat TaCDK8/TaWIN1 interaction negatively affects
           germination of Blumeria graminis f.sp. tritici by interfering with
           very-long-chain aldehyde biosynthesis
    • Authors: Lingyao Kong; Cheng Chang
      Abstract: Key message Wheat TaCDK8 interacts with TaWIN1 to regulate very-long-chain aldehyde biosynthesis required for efficient germination of Blumeria graminis f.sp. tritici. Powdery mildew caused by Blumeria graminis f.sp. tritici (Bgt) is a devastating disease of common wheat (Triticum aestivum L.). Bgt infection initiates with its conidia germination on the aerial surface of wheat. In this study, we isolated the cyclin-dependent kinase 8 (TaCDK8) from wheat cultivar Jing411 and found that silencing of TaCDK8 impeded Bgt germination. The biochemical and molecular-biological assays revealed that TaCDK8 interacts with and phosphorylates the wheat transcription factor wax inducer 1 (TaWIN1) to stimulate the TaWIN1-dependent transcription. Bgt conidia on the leaves of TaWIN1-silenced plants also showed reduced germination. Gas chromatographic analysis revealed that knockdown of TaCDK8 or TaWIN1 resulted in decreases of wax components and cutin monomers in wheat leaves. Moreover, Bgt germination on leaves of TaCDK8 or TaWIN1 silenced plants could be fully restored by application of wild-type cuticular wax. In vitro studies demonstrated that very-long-chain aldehydes absent from the cuticular wax of the TaCDK8 or TaWIN1 silenced plants were capable of chemically stimulating Bgt germination. These results implicated that the suppression of TaCDK8/TaWIN1 interaction negatively affects Bgt germination by interfering with very-long-chain aldehyde biosynthesis required for efficient fungal germination.
      PubDate: 2017-12-02
      DOI: 10.1007/s11103-017-0687-4
  • Deletion of psbQ ’ gene in Cyanidioschyzon merolae reveals the function
           of extrinsic PsbQ ’ in PSII
    • Authors: Maksymilian Zienkiewicz; Tomasz Krupnik; Anna Drożak; Wioleta Wasilewska; Anna Golke; Elżbieta Romanowska
      Abstract: Key message We have successfully produced single-cell colonies of C. merolae mutants, lacking the PsbQ’ subunit in its PSII complex by application of DTA-aided mutant selection. We have investigated the physiological changes in PSII function and structure and proposed a tentative explanation of the function of PsbQ’ subunit in the PSII complex. We have improved the selectivity of the Cyanidioschyzon merolae nuclear transformation method by the introduction of diphtheria toxin genes into the transformation vector as an auxiliary selectable marker. The revised method allowed us to obtained single-cell colonies of C. merolae, lacking the gene of the PsbQ’ extrinsic protein. The efficiency of gene replacement was extraordinarily high, allowing for a complete deletion of the gene of interest, without undesirable illegitimate integration events. We have confirmed the absence of PsbQ’ protein at genetic and protein level. We have characterized the physiology of mutant cells and isolated PSII protein complex and concluded that PsbQ’ is involved in nuclear regulation of PSII activity, by influencing several parameters of PSII function. Among these: oxygen evolving activity, partial dissociation of PsbV, regulation of dimerization, downsizing of phycobilisomes rods and regulation of zeaxanthin abundance. The adaptation of cellular physiology appeared to favorite upregulation of PSII and concurrent downregulation of PSI, resulting in an imbalance of energy distribution, decrease of photosynthesis and inhibition of cell proliferation.
      PubDate: 2017-12-01
      DOI: 10.1007/s11103-017-0685-6
  • Heat stress alters genome-wide profiles of circular RNAs in Arabidopsis
    • Authors: Ting Pan; Xiuqiang Sun; Yangxuan Liu; Hui Li; Guangbin Deng; Honghui Lin; Songhu Wang
      Abstract: Key message 1599 novel circRNAs and 1583 heat stress-specific circRNAs were identified in Arabidopsis. Heat stress enhanced accumulation of circRNAs remarkably. Heat stress altered the sizes of circRNAs, numbers of circularized exons and alterative circularization events. A putative circRNA-mediated ceRNA networks under heat stress was established. Heat stress retards plant growth and destabilizes crop yield. The noncoding RNAs were demonstrated to be involved in plant response to heat stress. As a newly-characterized class of noncoding RNAs, circular RNAs (circRNAs) play important roles in transcriptional and post-transcriptional regulation. A few recent investigations indicated that plant circRNAs were differentially expressed under abiotic stress. However, little is known about how heat stress mediates biogenesis of circRNAs in plants. Here, we uncovered 1599 previously-unknown circRNAs and 1583 heat-specific circRNAs, by RNA-sequencing and bioinformatic analysis. Our results indicated that much more circRNAs were expressed under heat stress than in control condition. Besides, heat stress also increased the length of circRNAs, the quantity of circularized exons, and alternative circularization events. Moreover, we observed a positive correlation between expression patterns of some circRNAs and their parental genes. The prediction of ceRNA (competing endogenous RNA) networks indicated that differentially-expressed circRNAs could influence expression of many important genes, that participate in response to heat stress, hydrogen peroxide, and phytohormone signaling pathways, by interacting with the corresponding microRNAs. Together, our observations indicated that heat stress had great impacts on the biogenesis of circRNAs. Heat-induced circRNAs might participate in plant response to heat stress through the circRNA-mediated ceRNA networks.
      PubDate: 2017-11-24
      DOI: 10.1007/s11103-017-0684-7
  • SPL13 regulates shoot branching and flowering time in Medicago sativa
    • Authors: Ruimin Gao; Margaret Y. Gruber; Lisa Amyot; Abdelali Hannoufa
      Abstract: Key message Our results show SPL13 plays a crucial role in regulating vegetative and reproductive development in Medicago sativa L. (alfalfa), and that MYB112 is targeted and downregulated by SPL13 in alfalfa. We previously showed that transgenic Medicago sativa (alfalfa) plants overexpressing microRNA156 (miR156) show a bushy phenotype, reduced internodal length, delayed flowering time, and enhanced biomass yield. In alfalfa, transcripts of seven SQUAMOSA-PROMOTER BINDING PROTEIN-LIKE (SPL) transcription factors, including SPL13, are targeted for cleavage by miR156. Thus, association of each target SPL gene to a trait or set of traits is essential for developing molecular markers for alfalfa breeding. In this study, we investigated SPL13 function using SPL13 overexpression and silenced alfalfa plants. Severe growth retardation, distorted branches and up-curled leaves were observed in miR156-impervious 35S::SPL13m over-expression plants. In contrast, more lateral branches and delayed flowering time were observed in SPL13 silenced plants. SPL13 transcripts were predominantly present in the plant meristems, indicating that SPL13 is involved in regulating shoot branch development. Accordingly, the shoot branching-related CAROTENOID CLEAVAGE DIOXYGENASE 8 gene was found to be significantly downregulated in SPL13 RNAi silencing plants. A R2R3-MYB gene MYB112 was also identified as being directly silenced by SPL13 based on Next Generation Sequencing-mediated transcriptome analysis and chromatin immunoprecipitation assays, suggesting that MYB112 may be involved in regulating alfalfa vegetative growth.
      PubDate: 2017-11-17
      DOI: 10.1007/s11103-017-0683-8
  • A single nucleotide mutation of IspF gene involved in the MEP pathway for
           isoprenoid biosynthesis causes yellow-green leaf phenotype in rice
    • Authors: Rui Huang; Yang Wang; Pingrong Wang; Chunmei Li; Fuliang Xiao; Nenggang Chen; Na Li; Caixia Li; Changhui Sun; Lihua Li; Rongjun Chen; Zhengjun Xu; Jianqing Zhu; Xiaojian Deng
      Abstract: Key message We identified IspF gene through yellow-green leaf mutant 505ys in rice. OsIspF was expressed in all tissues detected, and its encoded protein was targeted to the chloroplast. On expression levels of genes in this mutant, OsIspF itself and the genes encoding other enzymes of the MEP pathway and chlorophyll synthase were all up-regulated, however, among eight genes associated with photosynthesis, only psaA, psaN and psbA genes for three reaction center subunits of photosystem obviously changed. Isoprenoids are the most abundant natural compounds in all organisms, which originate from the basic five-carbon units isopentenyl diphosphate (IPP) and dimethylallyl diphosphate (DMAPP). In plants, IPP and DMAPP are synthesized through two independent pathways, the mevalonic acid pathway in cytoplasm and the 2-C-methyl-d-erythritol 4-phosphate (MEP) pathway in plastids. The MEP pathway comprises seven enzymatic steps, in which IspF is the fifth enzyme. So far, no IspF gene has been identified in monocotyledonous plants. In this study, we isolated a leaf-color mutant, 505ys, in rice (Oryza sativa). The mutant displayed yellow-green leaf phenotype, reduced level of photosynthetic pigments, and arrested development of chloroplasts. By map-based cloning of this mutant, we identified OsIspF gene (LOC_Os02g45660) showing significant similarity to IspF gene of Arabidopsis, in which a missense mutation occurred in the mutant, resulting in an amino acid change in the encoded protein. OsIspF gene was expressed in all tissues detected, and its encoded protein was targeted to the chloroplast. Further, the mutant phenotype of 505ys was complemented by transformation with the wild-type OsIspF gene. Therefore, we successfully identified an IspF gene in monocotyledonous plants. In addition, real-time quantitative RT-PCR implied that a positive regulation could exist between the OsIspF gene and the genes encoding other enzymes of the MEP pathway and chlorophyll synthase. At the same time, it also implied that the individual genes involved in the MEP pathway might differentially regulated expression levels of the genes associated with photosynthesis.
      PubDate: 2017-11-15
      DOI: 10.1007/s11103-017-0668-7
  • A comparative transcriptomic approach to understanding the formation of
    • Authors: Pau Boher; Marçal Soler; Anna Sánchez; Claire Hoede; Céline Noirot; Jorge Almiro Pinto Paiva; Olga Serra; Mercè Figueras
      Abstract: Key message The transcriptome comparison of two oak species reveals possible candidates accounting for the exceptionally thick and pure cork oak phellem, such as those involved in secondary metabolism and phellogen activity. Cork oak, Quercus suber, differs from other Mediterranean oaks such as holm oak (Quercus ilex) by the thickness and organization of the external bark. While holm oak outer bark contains sequential periderms interspersed with dead secondary phloem (rhytidome), the cork oak outer bark only contains thick layers of phellem (cork rings) that accumulate until reaching a thickness that allows industrial uses. Here we compare the cork oak outer bark transcriptome with that of holm oak. Both transcriptomes present similitudes in their complexity, but whereas cork oak external bark is enriched with upregulated genes related to suberin, which is the main polymer responsible for the protective function of periderm, the upregulated categories of holm oak are enriched in abiotic stress and chromatin assembly. Concomitantly with the upregulation of suberin-related genes, there is also induction of regulatory and meristematic genes, whose predicted activities agree with the increased number of phellem layers found in the cork oak sample. Further transcript profiling among different cork oak tissues and conditions suggests that cork and wood share many regulatory mechanisms, probably reflecting similar ontogeny. Moreover, the analysis of transcripts accumulation during the cork growth season showed that most regulatory genes are upregulated early in the season when the cork cambium becomes active. Altogether our work provides the first transcriptome comparison between cork oak and holm oak outer bark, which unveils new regulatory candidate genes of phellem development.
      PubDate: 2017-11-15
      DOI: 10.1007/s11103-017-0682-9
  • Evolution of Rubisco activase gene in plants
    • Authors: Ragupathi Nagarajan; Kulvinder S. Gill
      Abstract: Key message Rubisco activase of plants evolved in a stepwise manner without losing its function to adapt to the major evolutionary events including endosymbiosis and land colonization. Rubisco activase is an essential enzyme for photosynthesis, which removes inhibitory sugar phosphates from the active sites of Rubisco, a process necessary for Rubisco activation and carbon fixation. The gene probably evolved in cyanobacteria as different species differ for its presence. However, the gene is present in all other plant species. At least a single gene copy was maintained throughout plant evolution; but various genome and gene duplication events, which occurred during plant evolution, increased its copy number in some species. The exons and exon–intron junctions of present day higher plant’s Rca, which is conserved in most species seem to have evolved in charophytes. A unique tandem duplication of Rca gene occurred in a common grass ancestor, and the two genes evolved differently for gene structure, sequence, and expression pattern. At the protein level, starting with a primitive form in cyanobacteria, RCA of chlorophytes evolved by integrating chloroplast transit peptide (cTP), and N-terminal domains to the ATPase, Rubisco recognition and C-terminal domains. The redox regulated C-terminal extension (CTE) and the associated alternate splicing mechanism, which splices the RCA-α and RCA-β isoforms were probably gained from another gene in charophytes, conserved in most species except the members of Solanaceae family.
      PubDate: 2017-11-14
      DOI: 10.1007/s11103-017-0680-y
  • Structure, target-specificity and expression of PN_LNC_N13 , a long
           non-coding RNA differentially expressed in apomictic and sexual Paspalum
    • Authors: Ana Ochogavía; Giulio Galla; José Guillermo Seijo; Ana María González; Michele Bellucci; Fulvio Pupilli; Gianni Barcaccia; Emidio Albertini; Silvina Pessino
      Abstract: Key message ncRNA PN_LNC_N13 shows contrasting expression in reproductive organs of sexual and apomictic Paspalum notatum genotypes. Apomictic plants set genetically maternal seeds whose embryos derive by parthenogenesis from unreduced egg cells, giving rise to clonal offspring. Several Paspalum notatum apomixis related genes were identified in prior work by comparative transcriptome analyses. Here, one of these candidates (namely N13) was characterized. N13 belongs to a Paspalum gene family including 30–60 members, of which at least eight are expressed at moderate levels in florets. The sequences of these genes show no functional ORFs, but include segments of different protein coding genes. Particularly, N13 shows partial identity to maize gene BT068773 (RESPONSE REGULATOR 6). Secondary structure predictions as well as mature miRNA and target cleavage detection suggested that N13 is not a miRNA precursor. Moreover, N13 family members produce abundant 24-nucleotide small RNAs along extensive parts of their sequences. Surveys in the GREENC and CANTATA databases indicated similarity with plant long non-coding RNAs (lncRNAs) involved in splicing regulation; consequently, N13 was renamed as PN_LNC_N13. The Paspalum BT068773 predicted ortholog (N13TAR) originates floral transcript variants shorter than the canonical maize isoform and with possible structural differences between the apomictic and sexual types. PN_LNC_N13 is expressed only in apomictic plants and displays quantitative representation variation across reproductive developmental stages. However, PN_LNC_N13-like homologs and/or its derived sRNAs showed overall a higher representation in ovules of sexual plants at late premeiosis. Our results suggest the existence of a whole family of N13-like lncRNAs possibly involved in splicing regulation, with some members characterized by differential activity across reproductive types.
      PubDate: 2017-11-08
      DOI: 10.1007/s11103-017-0679-4
  • N-glycan structures and downstream mannose-phosphorylation of plant
           recombinant human alpha- l -iduronidase: toward development of enzyme
           replacement therapy for mucopolysaccharidosis I
    • Authors: Owen M. Pierce; Grant R. McNair; Xu He; Hiroyuki Kajiura; Kazuhito Fujiyama; Allison R. Kermode
      Abstract: Key message Arabidopsis N-glycan processing mutants provide the basis for tailoring recombinant enzymes for use as replacement therapeutics to treat lysosomal storage diseases, including N-glycan mannose phosphorylation to ensure lysosomal trafficking and efficacy. Functional recombinant human alpha-l-iduronidase (IDUA; EC enzymes were generated in seeds of the Arabidopsis thaliana complex-glycan-deficient (cgl) C5 background, which is deficient in the activity of N-acetylglucosaminyl transferase I, and in seeds of the Arabidopsis gm1 mutant, which lacks Golgi α-mannosidase I (GM1) activity. Both strategies effectively prevented N-glycan maturation and the resultant N-glycan structures on the consensus sites for N-glycosylation of the human enzyme revealed high-mannose N-glycans of predominantly Man5 (cgl-IDUA) or Man6−8 (gm1-IDUA) structures. Both forms of IDUA were equivalent with respect to their kinetic parameters characterized by cleavage of the artificial substrate 4-methylumbelliferyl-iduronide. Because recombinant lysosomal enzymes produced in plants require the addition of mannose-6-phosphate (M6P) in order to be suitable for lysosomal delivery in human cells, we characterized the two IDUA proteins for their amenability to downstream in vitro mannose phosphorylation mediated by a soluble form of the human phosphotransferase (UDP-GlcNAc: lysosomal enzyme N-acetylglucosamine [GlcNAc]-1-phosphotransferase). Gm1-IDUA exhibited a slight advantage over the cgl-IDUA in the in vitro M6P-tagging process, with respect to having a better affinity (i.e. lower K m) for the soluble phosphotransferase. This may be due to the greater number of mannose residues comprising the high-mannose N-glycans of gm1-IDUA. Our elite cgl- line produces IDUA at > 5.7% TSP (total soluble protein); screening of the gm1 lines showed a maximum yield of 1.5% TSP. Overall our findings demonstrate the relative advantages and disadvantages associated with the two platforms to create enzyme replacement therapeutics for lysosomal storage diseases.
      PubDate: 2017-11-08
      DOI: 10.1007/s11103-017-0673-x
  • Substrates of the chloroplast small heat shock proteins 22E/F point to
           thermolability as a regulative switch for heat acclimation in
           Chlamydomonas reinhardtii
    • Authors: Mark Rütgers; Ligia Segatto Muranaka; Timo Mühlhaus; Frederik Sommer; Sylvia Thoms; Juliane Schurig; Felix Willmund; Miriam Schulz-Raffelt; Michael Schroda
      Abstract: Key message We have identified 39 proteins that interact directly or indirectly with high confidence with chloroplast HSP22E/F under heat stress thus revealing chloroplast processes affected by heat. Under conditions promoting protein unfolding, small heat shock proteins (sHsps) prevent the irreversible aggregation of unfolding proteins by integrating into forming aggregates. Aggregates containing sHsps facilitate the access of Hsp70 and ClpB/Hsp104 chaperones, which in ATP-dependent reactions disentangle individual proteins from the aggregates and assist in their refolding to the native state. Chlamydomonas reinhardtii encodes eight different sHsps (HSP22A to H). The goal of this work was to identify chloroplast-targeted sHsps in Chlamydomonas and to obtain a comprehensive list of the substrates with which they interact during heat stress in order to understand which chloroplast processes are disturbed under heat stress. We show that HSP22E and HSP22F are major chloroplast-targeted sHsps that have emerged from a recent gene duplication event resulting from the ongoing diversification of sHsps in the Volvocales. HSP22E/F strongly accumulate during heat stress and form high molecular mass complexes. Using differential immunoprecipitation, mass spectrometry and a stringent filtering algorithm we identified 39 proteins that with high-confidence interact directly or indirectly with HSP22E/F under heat stress. We propose that the apparent thermolability of several of these proteins might be a desired trait as part of a mechanism enabling Chlamydomonas chloroplasts to rapidly react to thermal stress.
      PubDate: 2017-11-01
      DOI: 10.1007/s11103-017-0672-y
  • Comparative transcriptome analysis reveals whole-genome duplications and
           gene selection patterns in cultivated and wild Chrysanthemum species
    • Authors: So Youn Won; Soo-Jin Kwon; Tae-Ho Lee; Jae-A Jung; Jung Sun Kim; Sang-Ho Kang; Seong-Han Sohn
      Abstract: Key message Comparative transcriptome analysis of wild and cultivated chrysanthemums provides valuable genomic resources and helps uncover common and divergent patterns of genome and gene evolution in these species. Plants are unique in that they employ polyploidy (or whole-genome duplication, WGD) as a key process for speciation and evolution. The Chrysanthemum genus is closely associated with hybridization and polyploidization, with Chrysanthemum species exhibiting diverse ploidy levels. The commercially important species, C. morifolium is an allohexaploid plant that is thought to have originated via the hybridization of several Chrysanthemum species, but the genomic and molecular evolutionary mechanisms remain poorly understood. In the present study, we sequenced and compared the transcriptomes of C. morifolium and the wild Korean diploid species, C. boreale. De novo transcriptome assembly revealed 11,318 genes in C. morifolium and 10,961 genes in C. boreale, whose functions were annotated by homology searches. An analysis of synonymous substitution rates (Ks) of paralogous and orthologous genes suggested that the two Chrysanthemum species commonly experienced the Asteraceae paleopolyploidization and recent genome duplication or triplication before the divergence of these species. Intriguingly, C. boreale probably underwent rapid diploidization, with a reduction in chromosome number, whereas C. morifolium maintained the original chromosome number. Analysis of the ratios of non-synonymous to synonymous nucleotide substitutions (Ka/Ks) between orthologous gene pairs indicated that 107 genes experienced positive selection, which may have been crucial for the adaptation, domestication, and speciation of Chrysanthemum.
      PubDate: 2017-10-19
      DOI: 10.1007/s11103-017-0663-z
School of Mathematical and Computer Sciences
Heriot-Watt University
Edinburgh, EH14 4AS, UK
Tel: +00 44 (0)131 4513762
Fax: +00 44 (0)131 4513327
Home (Search)
Subjects A-Z
Publishers A-Z
Your IP address:
About JournalTOCs
News (blog, publications)
JournalTOCs on Twitter   JournalTOCs on Facebook

JournalTOCs © 2009-2016