for Journals by Title or ISSN
for Articles by Keywords

Publisher: Springer-Verlag   (Total: 2302 journals)

 A  B  C  D  E  F  G  H  I  J  K  L  M  N  O  P  Q  R  S  T  U  V  W  X  Y  Z  

  First | 17 18 19 20 21 22 23 24     

The end of the list has been reached. Please navigate to previous pages.

  First | 17 18 19 20 21 22 23 24     

Journal Cover   Plant Molecular Biology
  [SJR: 1.842]   [H-I: 121]   [10 followers]  Follow
   Hybrid Journal Hybrid journal (It can contain Open Access articles)
   ISSN (Print) 1573-5028 - ISSN (Online) 0167-4412
   Published by Springer-Verlag Homepage  [2302 journals]
  • Apple russeting as seen through the RNA-seq lens: strong alterations in
           the exocarp cell wall
    • Abstract: Abstract Russeting, a commercially important defect in the exocarp of apple (Malus × domestica), is mainly characterized by the accumulation of suberin on the inner part of the cell wall of the outer epidermal cell layers. However, knowledge on the underlying genetic components triggering this trait remains sketchy. Bulk transcriptomic profiling was performed on the exocarps of three russeted and three waxy apple varieties. This experimental design was chosen to lower the impact of genotype on the obtained results. Validation by qPCR was carried out on representative genes and additional varieties. Gene ontology enrichment revealed a repression of lignin and cuticle biosynthesis genes in russeted exocarps, concomitantly with an enhanced expression of suberin deposition, stress responsive, primary sensing, NAC and MYB-family transcription factors, and specific triterpene biosynthetic genes. Notably, a strong correlation (R2 = 0.976) between the expression of a MYB93-like transcription factor and key suberin biosynthetic genes was found. Our results suggest that russeting is induced by a decreased expression of cuticle biosynthetic genes, leading to a stress response which not only affects suberin deposition, but also the entire structure of the cell wall. The large number of candidate genes identified in this study provides a solid foundation for further functional studies.
      PubDate: 2015-03-19
  • Constitutive and stress-inducible overexpression of a native aquaporin
           gene ( MusaPIP2;6 ) in transgenic banana plants signals its pivotal role
           in salt tolerance
    • Abstract: Abstract High soil salinity constitutes a major abiotic stress and an important limiting factor in cultivation of crop plants worldwide. Here, we report the identification and characterization of a aquaporin gene, MusaPIP2;6 which is involved in salt stress signaling in banana. MusaPIP2;6 was firstly identified based on comparative analysis of stressed and non-stressed banana tissue derived EST data sets and later overexpression in transgenic banana plants was performed to study its tangible functions in banana plants. The overexpression of MusaPIP2;6 in transgenic banana plants using constitutive or inducible promoter led to higher salt tolerance as compared to equivalent untransformed control plants. Cellular localization assay performed using transiently transformed onion peel cells indicated that MusaPIP2;6 protein tagged with green fluorescent protein was translocated to the plasma membrane. MusaPIP2;6-overexpressing banana plants displayed better photosynthetic efficiency and lower membrane damage under salt stress conditions. Our results suggest that MusaPIP2;6 is involved in salt stress signaling and tolerance in banana.
      PubDate: 2015-03-11
  • Expression of SOD and APX genes positively regulates secondary cell wall
           biosynthesis and promotes plant growth and yield in Arabidopsis under salt
    • Abstract: Abstract Abiotic stresses cause accumulation of reactive oxygen species (ROS), such as hydrogen peroxide (H2O2) in plants. Sophisticated mechanisms are required to maintain optimum level of H2O2 that acts as signalling molecule regulating adaptive response to salt stress. CuZn-superoxide dismutase (CuZn-SOD) and ascorbate peroxidase (APX) constitute first line of defence against oxidative stress. In the present study, PaSOD and RaAPX genes from Potentilla atrosanguinea and Rheum australe, respectively were overexpressed individually as well as in combination in Arabidopsis thaliana. Interestingly, PaSOD and dual transgenic lines exhibit enhanced lignin deposition in their vascular bundles with altered S:G ratio under salt stress. RNA-seq analysis revealed that expression of PaSOD gene in single and dual transgenics positively regulates expression of lignin biosynthesis genes and transcription factors (NACs, MYBs, C3Hs and WRKY), leading to enhanced and ectopic deposition of lignin in vascular tissues with larger xylem fibres and alters S:G ratio, as well. In addition, transgenic plants exhibit growth promotion, higher biomass production and increased yield under salt stress as compared to wild type plants. Our results suggest that in dual transgenics, ROS generated during salt stress gets converted into H2O2 by SOD and its optimum level was maintained by APX. This basal level of H2O2 acts as messenger for transcriptional activation of lignin biosynthesis in vascular tissue, which provides mechanical strength to plants. These findings reveal an important role of PaSOD and RaAPX in enhancing salt tolerance of transgenic Arabidopsis via increased accumulation of compatible solutes and by regulating lignin biosynthesis.
      PubDate: 2015-03-10
  • A temperature induced lipocalin gene from Medicago falcata ( MfTIL1 )
           confers tolerance to cold and oxidative stress
    • Abstract: Abstract Temperature-induced lipocalins (TIL) are plasmalemma-localized proteins and responsive to environmental stresses. Physiological functions of MfTIL1 from Medicago sativa subsp. falcata (L.) Arcang. (hereafter falcata), a forage legume with cold and drought tolerance, were investigated in this study. MfTIL1 expression was greatly induced by 4–96 h of cold treatment, while transcript levels of the orthologs in Medicago truncatula, a model legume plant with lower cold tolerance than falcata, were reduced or not altered within 48–96 h. MfTIL1 expression was not responsive to dehydration and salinity. Compared to the wild type, transgenic tobacco plants overexpressing MfTIL1 had lower temperature (LT50) that resulted in 50 % lethal and elevated survival rate in response to freezing, elevated F v/F m and decreased ion leakage after treatments with chilling, high light and methyl viologen (MV). H2O2 and O2 − were less accumulated in transgenic plants than in the wild type after treatments with chilling, high light and MV, while antioxidant enzyme activities showed no difference between the two types of plants prior to or following treatments. Higher transcript levels of NtDREB3 and NtDREB4 genes were observed in transgenic plants than in the wild type under non-stressed conditions, but higher transcript levels of NtDREB1, NtDREB2, NtDREB4 and NtCOR15a genes under chilling conditions. It is suggested that MfTIL1 plays an important role in plant tolerance to cold and oxidative stress through promoted scavenging of reactive oxygen species and up-regulating expression of multiple cold responsive genes.
      PubDate: 2015-03-06
  • Identification and characterization of plant-specific NAC gene family in
           canola ( Brassica napus L.) reveal novel members involved in cell death
    • Abstract: Abstract NAC transcription factors are plant-specific and play important roles in plant development processes, response to biotic and abiotic cues and hormone signaling. However, to date, little is known about the NAC genes in canola (or oilseed rape, Brassica napus L.). In this study, a total of 60 NAC genes were identified from canola through a systematical analysis and mining of expressed sequence tags. Among these, the cDNA sequences of 41 NAC genes were successfully cloned. The translated protein sequences of canola NAC genes with the NAC genes from representative species were phylogenetically clustered into three major groups and multiple subgroups. The transcriptional activities of these BnaNAC proteins were assayed in yeast. In addition, by quantitative real-time RT-PCR, we further observed that some of these BnaNACs were regulated by different hormone stimuli or abiotic stresses. Interestingly, we successfully identified two novel BnaNACs, BnaNAC19 and BnaNAC82, which could elicit hypersensitive response-like cell death when expressed in Nicotiana benthamiana leaves, which was mediated by accumulation of reactive oxygen species. Overall, our work has laid a solid foundation for further characterization of this important NAC gene family in canola.
      PubDate: 2015-03-01
  • A maize phytochrome-interacting factor 3 improves drought and salt stress
           tolerance in rice
    • Abstract: Abstract Phytochrome-interacting factor 3 (PIF3) activates light-responsive transcriptional network genes in coordination with the circadian clock and plant hormones to modulate plant growth and development. However, little is known of the roles PIF3 plays in the responses to abiotic stresses. In this study, the cloning and functional characterization of the ZmPIF3 gene encoding a maize PIF3 protein is reported. Subcellular localization revealed the presence of ZmPIF3 in the cell nucleus. Expression patterns revealed that ZmPIF3 is expressed strongly in leaves. This expression responds to polyethylene glycol, NaCl stress, and abscisic acid application, but not to cold stress. ZmPIF3 under the control of the ubiquitin promoter was introduced into rice. No difference in growth and development between ZmPIF3 transgenic and wild-type plants was observed under normal growth conditions. However, ZmPIF3 transgenic plants were more tolerant to dehydration and salt stresses. ZmPIF3 transgenic plants had increased relative water content, chlorophyll content, and chlorophyll fluorescence, as well as significantly enhanced cell membrane stability under stress conditions. The over-expression of ZmPIF3 increased the expression of stress-responsive genes, such as Rab16D, DREB2A, OSE2, PP2C, Rab21, BZ8 and P5CS, as detected by real-time PCR analysis. Taken together, these results improve our understanding of the role ZmPIF3 plays in abiotic stresses signaling pathways; our findings also indicate that ZmPIF3 regulates the plant response to drought and salt stresses.
      PubDate: 2015-03-01
  • RNA-Seq analysis of rye-grass transcriptomic response to an herbicide
           inhibiting acetolactate-synthase identifies transcripts linked to
           non-target-site-based resistance
    • Abstract: Abstract Non-target-site resistance (NTSR) to herbicides that disrupts agricultural weed control is a worldwide concern for food security. NTSR is considered a polygenic adaptive trait driven by differential gene regulation in resistant plants. Little is known about its genetic determinism, which precludes NTSR diagnosis and evolutionary studies. We used Illumina RNA-sequencing to investigate transcriptomic differences between plants from the global major weed rye-grass sensitive or resistant to the acetolactate-synthase (ALS) inhibiting herbicide pyroxsulam. Plants were collected before and along a time-course after herbicide application. De novo transcriptome assembly yielded a resource (LOLbase) including 92,381 contigs representing potentially active transcripts that were assigned putative annotations. Early effects of ALS inhibition consistent with the literature were observed in resistant and sensitive plants, proving LOLbase data were relevant to study herbicide response. Comparison of resistant and sensitive plants identified 30 candidate NTSR contigs. Further validation using 212 plants resistant or sensitive to pyroxsulam and/or to the ALS inhibitors iodosulfuron + mesosulfuron confirmed four contigs (two cytochromes P450, one glycosyl-transferase and one glutathione-S-transferase) were NTSR markers which combined expression levels could reliably identify resistant plants. This work confirmed that NTSR is driven by differential gene expression and involves different mechanisms. It provided tools and foundation for subsequent NTSR investigations.
      PubDate: 2015-03-01
  • Positive selection drives neofunctionalization of the UbiA
           prenyltransferase gene family
    • Abstract: Abstract Gene duplication provides the key materials for new genes and novel functions. However, the mechanism underlying functional innovation remains unknown. In this study, we revealed the evolutionary pattern of the prenyltransferases of the UbiA gene family in 15 higher plants. Prenyltransferases of the UbiA gene family are involved in many important biological processes of both primary and secondary metabolism. Based on the phylogenetic relationships of the UbiA genes, seven subfamilies are classified. Confirming this classification, genes within each subfamily are characterized by similar exon numbers, exon lengths and patterns of motif combinations. Similar numbers of UbiA genes are found in different species within each subfamily except for Subfamily I, in which a Phaseoleae-specific expansion is detected in clade I-A. Homologous genes in clade I-A evolve rapidly, exchange sequences frequently and experience positive selection. Genes in clade I-A function as flavonoid prenyltransferase synthesis secondary compounds, while other genes from Subfamily I encode homogentisate phytyltransferase, which plays a role in primary metabolism. Thus, our results suggest that the secondary metabolism genes acquire new functions from those of primary metabolism through gene duplication and neofunctionalization driven by positive selection.
      PubDate: 2015-03-01
  • Arabidopsis thaliana MSI4/FVE associates with members of a novel family of
           plant specific PWWP/RRM domain proteins
    • Abstract: Abstract AtMSI4/FVE/ACG1, one of five Arabidopsis thaliana genes encoding MSI1-like proteins, helps determine plant growth and development (including control of flowering), as well as responses to certain biotic and abiotic stresses. We reasoned that the product of this gene, AtMSI4, acts through protein partners, which we have co-immunopurified with AtMSI4 from A. thaliana suspension culture cells and identified by liquid chromatography–mass spectrometry (LC–MS). Many of the proteins associated with AtMSI4 have distinct RNA recognition motif (RRM) domains, which we determined to be responsible for association with AtMSI4; and most of the associated RRM domain proteins also contain PWWP domains that are specific to plants. We propose these novel ATMSI4-associated proteins help form nucleoprotein complexes that determine pleiotropic functional properties of AtMSI4/FVE/ACG1 involving plant development and responses to stress.
      PubDate: 2015-03-01
  • The Arabidopsis MYB96 transcription factor plays a role in seed dormancy
    • Abstract: Abstract Seed dormancy facilitates to endure environmental disadvantages by confining embryonic growth until the seeds encounter favorable environmental conditions for germination. Abscisic acid (ABA) and gibberellic acid (GA) play a pivotal role in the determination of the seed dormancy state. ABA establishes seed dormancy, while GA triggers seed germination. Here, we demonstrate that MYB96 contributes to the fine-tuning of seed dormancy regulation through the coordination of ABA and GA metabolism. The MYB96-deficient myb96-1 seeds germinated earlier than wild-type seeds, whereas delayed germination was observed in the activation-tagging myb96-1D seeds. The differences in germination rate disappeared after stratification or after-ripening. The MYB96 transcription factor positively regulates ABA biosynthesis genes 9-CIS-EPOXYCAROTENOID DIOXYGENASE 2 (NCED2), NCED5, NCED6, and NCED9, and also affects GA biosynthetic genes GA3ox1 and GA20ox1. Notably, MYB96 directly binds to the promoters of NCED2 and NCED6, primarily modulating ABA biosynthesis, which subsequently influences GA metabolism. In agreement with this, hyperdormancy of myb96-1D seeds was recovered by an ABA biosynthesis inhibitor fluridone, while hypodormancy of myb96-1 seeds was suppressed by a GA biosynthesis inhibitor paclobutrazol (PAC). Taken together, the metabolic balance of ABA and GA underlies MYB96 control of primary seed dormancy.
      PubDate: 2015-03-01
  • Ectopic expression of a phytochrome B gene from Chinese cabbage ( Brassica
           rapa L. ssp. pekinensis ) in Arabidopsis thaliana promotes seedling
           de-etiolation, dwarfing in mature plants, and delayed flowering
    • Abstract: Abstract Phytochrome B (phyB) is an essential red light receptor that predominantly mediates seedling de-etiolation, shade-avoidance response, and flowering time. In this study, we isolate a full-length cDNA of PHYB, designated BrPHYB, from Chinese cabbage (Brassica rapa L. ssp. pekinensis), and we find that BrphyB protein has high amino acid sequence similarity and the closest evolutionary relationship to Arabidopsis thaliana phyB (i.e., AtphyB). Quantitative reverse transcription (RT)-PCR results indicate that the BrPHYB gene is ubiquitously expressed in different tissues under all light conditions. Constitutive expression of the BrPHYB gene in A. thaliana significantly enhances seedling de-etiolation under red- and white-light conditions, and causes dwarf stature in mature plants. Unexpectedly, overexpression of BrPHYB in transgenic A. thaliana resulted in reduced expression of gibberellins biosynthesis genes and delayed flowering under short-day conditions, whereas AtPHYB overexpression caused enhanced expression of FLOWERING LOCUS T and earlier flowering. Our results suggest that BrphyB might play an important role in regulating the development of Chinese cabbage. BrphyB and AtphyB have conserved functions during de-etiolation and vegetative plant growth and divergent functions in the regulation of flowering time.
      PubDate: 2015-02-28
  • Identification of tapetum-specific genes by comparing global gene
           expression of four different male sterile lines in Brassica oleracea
    • Abstract: Abstract The tapetum plays an important role in anther development by providing necessary enzymes and nutrients for pollen development. However, it is difficult to identify tapetum-specific genes on a large-scale because of the difficulty of separating tapetum cells from other anther tissues. Here, we reported the identification of tapetum-specific genes by comparing the gene expression patterns of four male sterile (MS) lines of Brassica oleracea. The abortive phenotypes of the four MS lines revealed different defects in tapetum and pollen development but normal anther wall development when observed by transmission electron microscopy. These tapetum displayed continuous defective characteristics throughout the anther developmental stages. The transcriptome from flower buds, covering all anther developmental stages, was analyzed and bioinformatics analyses exploring tapetum development-related genes were performed. We identified 1,005 genes differentially expressed in at least one of the MS lines and 104 were non-pollen expressed genes (NPGs). Most of the identified NPGs were tapetum-specific genes considering that anther walls were normally developed in all four MS lines. Among the 104 NPGs, 22 genes were previously reported as being involved in tapetum development. We further separated the expressed NPGs into different developmental stages based on the MS defects. The data obtained in this study are not only informative for research on tapetum development in B. oleracea, but are also useful for genetic pathway research in other related species.
      PubDate: 2015-02-25
  • Multiple internal sorting determinants can contribute to the trafficking
           of cruciferin to protein storage vacuoles
    • Abstract: Abstract Trafficking of seed storage proteins to protein storage vacuoles is mediated by carboxy terminal and internal sorting determinants (ISDs). Protein modelling was used to identify candidate ISDs residing near surface-exposed regions in Arabidopsis thaliana cruciferin A (AtCruA). These were verified by AtCruA fusion to yellow fluorescent protein (YFP) and expression in developing embryos of A. thaliana. As the presence of endogenous cruciferin was found to mask the effects of weaker ISDs, experiments were conducted in a line that was devoid of cruciferin. In total, nine ISDs were discovered and a core determinant defined using a series of alanine scanning and deletion mutant variants. Coupling of functional data from AtCruA ISD-YFP fusions with statistical analysis of the physiochemical properties of analogous regions from several 11/12S globulins revealed that cruciferin ISDs likely adhere to the following rules: (1) ISDs are adjacent to or within hydrophilic, surface-exposed regions that serve to present them on the protein’s surface; (2) ISDs generally have a hydrophobic character; (3) ISDs tend to have Leu or Ile residues at their core; (4) ISDs are approximately eight amino acids long with the physiochemical consensus [hydrophobic][preferably charged][small or hydrophobic, but not tiny][IL][polar, preferably charged][small, but not charged][hydrophobic, not charged, preferably not polar][hydrophobic, not tiny, preferably not polar]. Microscopic evidence is also presented for the presence of an interconnected protein storage vacuolar network in embryo cells, rather than discreet, individual vacuoles.
      PubDate: 2015-02-22
  • Appearance and elaboration of the ethylene receptor family during land
           plant evolution
    • Abstract: Abstract Ethylene is perceived following binding to endoplasmic reticulum-localized receptors, which in Arabidopsis thaliana, include ETR1, ERS1, EIN4, ETR2, and ERS2. These receptors fall into two subfamilies based on conservation of features within their histidine kinase domain. Subfamily 1 contains ETR1 and ERS1 whereas subfamily 2 contains EIN4, ETR2, and ERS2. Because ethylene receptors are found only in plants, this raises questions of when each receptor evolved. Here it is shown that subfamily 1 receptors encoded by a multigene family are present in all charophytes examined, these being most homologous to ETR1 based on their evolutionary relationship as well as containing histidine kinase and receiver domains. In charophytes and Physcomitrella patens, one or more gene family members contain the intron characteristic of subfamily 2 genes, indicating the first step in subfamily 2 receptor evolution. ERS1 homologs appear in basal angiosperm species after Amborella trichopoda and, in some early and basal angiosperm species and monocots in general, it is the only subfamily 1 receptor present. Distinct EIN4 and ETR2 homologs appear only in core eudicots and ERS2 homologs appear only in the Brassicaceae, suggesting it is the most recent receptor to evolve. These findings show that a subfamily 1 receptor had evolved and a subfamily 2 receptor had begun to evolve in plants prior to the colonization of land and only these two existed up to the appearance of the first basal angiosperm. The appearance of ERS2 in the Brassicaceae suggests ongoing evolution of the ethylene receptor family.
      PubDate: 2015-02-15
  • Knock-down of stress inducible OsSRFP1 encoding an E3 ubiquitin ligase
           with transcriptional activation activity confers abiotic stress tolerance
           through enhancing antioxidant protection in rice
    • Abstract: Abstract E3 ubiquitin ligases are involved in a variety of physiological processes. This study demonstrated the function of a previously unknown rice RING finger E3 ligase, Oryza sativa Stress-related RING Finger Protein 1 (OsSRFP1) in stress responses in rice. OsSRFP1 was ubiquitously expressed in various rice organs, with the higher expression levels in roots, panicles and culm nodes. The transcript of OsSRFP1 was induced by cold, dehydration, salt, H2O2 and abscisic acid treatments. Interestingly, the OsSRFP1-overexpressing plants were less tolerant to salt, cold and oxidative stresses than wild type plants; while the RNA interference silencing of OsSRFP1 plants were more tolerant than wild type without yield penalty. Compared with the wild type, amounts of free proline and activities of antioxidant enzymes were increased in the RNAi plants but decreased in the overexpression plants under cold stress, which were inversely correlated with the malondialdehyde and hydrogen peroxide (H2O2) levels in the tested lines. Microarray analysis showed that expression of numerous genes involving in ROS homeostasis was altered in the OsSRFP1-overexpressing plants under normal and cold conditions. In vitro ubiquitination assays showed that OsSRFP1 possessed E3 ubiquitin ligase activity and the intact RING domain was essential for the activity. Moreover, OsSRFP1 might function in transcriptional regulation with nuclear localization. Taken together, our results demonstrate that OsSRFP1 may have dual functions in post-translational and transcriptional regulations in modulating abiotic stress responses in rice, at least in part, by negatively regulating antioxidant enzymes-mediated reactive oxygen species removal.
      PubDate: 2015-02-11
  • Sequence variation, differential expression, and divergent evolution in
           starch-related genes among accessions of Arabidopsis thaliana
    • Abstract: Abstract Transitory starch metabolism is a nonlinear and highly regulated process. It originated very early in the evolution of chloroplast-containing cells and is largely based on a mosaic of genes derived from either the eukaryotic host cell or the prokaryotic endosymbiont. Initially located in the cytoplasm, starch metabolism was rewired into plastids in Chloroplastida. Relocation was accompanied by gene duplications that occurred in most starch-related gene families and resulted in subfunctionalization of the respective gene products. Starch-related isozymes were then evolutionary conserved by constraints such as internal starch structure, posttranslational protein import into plastids and interactions with other starch-related proteins. 25 starch-related genes in 26 accessions of Arabidopsis thaliana were sequenced to assess intraspecific diversity, phylogenetic relationships, and modes of selection. Furthermore, sequences derived from additional 80 accessions that are publicly available were analyzed. Diversity varies significantly among the starch-related genes. Starch synthases and phosphorylases exhibit highest nucleotide diversities, while pyrophosphatases and debranching enzymes are most conserved. The gene trees are most compatible with a scenario of extensive recombination, perhaps in a Pleistocene refugium. Most genes are under purifying selection, but disruptive selection was inferred for a few genes/substitutiones. To study transcript levels, leaves were harvested throughout the light period. By quantifying the transcript levels and by analyzing the sequence of the respective accessions, we were able to estimate whether transcript levels are mainly determined by genetic (i.e., accession dependent) or physiological (i.e., time dependent) parameters. We also identified polymorphic sites that putatively affect pattern or the level of transcripts.
      PubDate: 2015-02-08
  • A combinatorial bidirectional and bicistronic approach for coordinated
           multi-gene expression in corn
    • Abstract: Abstract Transgene stacking in trait development process through genetic engineering is becoming complex with increased number of desired traits and multiple modes of action for each trait. We demonstrate here a novel gene stacking strategy by combining bidirectional promoter (BDP) and bicistronic approaches to drive coordinated expression of multi-genes in corn. A unidirectional promoter, Ubiquitin-1 (ZMUbi1), from Zea mays was first converted into a synthetic BDP, such that a single promoter can direct the expression of two genes from each end of the promoter. The BDP system was then combined with a bicistronic organization of genes at both ends of the promoter by using a Thosea asigna virus 2A auto-cleaving domain. With this gene stacking configuration, we have successfully obtained expression in transgenic corn of four transgenes; three transgenes conferring insect (cry34Ab1 and cry35Ab1) and herbicide (aad1) resistance, and a phiyfp reporter gene using a single ZMUbi1 bidirectional promoter. Gene expression analyses of transgenic corn plants confirmed better coordinated expression of the four genes compared to constructs driving each gene by independent unidirectional ZmUbi1 promoter. To our knowledge, this is the first report that demonstrates application of a single promoter for co-regulation of multiple genes in a crop plant. This stacking technology would be useful for engineering metabolic pathways both for basic and applied research.
      PubDate: 2015-02-06
  • Genetic manipulation of a high-affinity PHR1 target cis -element to
           improve phosphorous uptake in Oryza sativa L.
    • Abstract: Abstract Phosphorus (P) is an essential macronutrient for crop development and production. Phosphate starvation response 1 (PHR1) acts as the central regulator for Pi-signaling and Pi-homeostasis in plants by binding to the cis-element PHR1 binding sequence (P1BS; GNATATNC). However, how phosphate starvation-induced gene expression is regulated remains obscure. In this work, we investigated the DNA binding affinity of the PHR1 ortholog OsPHR2 to its downstream target genes in Oryza sativa (rice). We confirmed that a combination of P1BS and P1BS-like motifs are essential for stable binding by OsPHR2. Furthermore, we report that variations in P1BS motif bases affected the binding affinity of OsPHR2 and that the highest affinity motif was GaATATtC (designated the A–T-type P1BS). We also found that a combination of two A–T-type P1BS elements in tandem, namely HA-P1BS, was very efficient for binding of OsPHR2. Using the cis-regulator HA-P1BS, we modified the promoters of Transporter Traffic Facilitator 1 (PHF1), a key factor controlling endoplasmic reticulum-exit of phosphate transporters to the plasma membrane, for efficient uptake of phosphorous in an energetically neutral way. Transgenic plants with the modified promoters showed significantly enhanced tolerance to low phosphate stress in both solution and soil conditions, which provides a new strategy for crop improvement to enhance tolerance of nutrient deficiency.
      PubDate: 2015-02-06
  • Camelid nanobodies with high affinity for broad bean mottle virus : a
           possible promising tool to immunomodulate plant resistance against viruses
    • Abstract: Abstract Worldwide, plant viral infections decrease seriously the crop production yield, boosting the demand to develop new strategies to control viral diseases. One of these strategies to prevent viral infections, based on the immunomodulation faces many problems related to the ectopic expression of specific antibodies in planta. Camelid nanobodies, expressed in plants, may offer a solution as they are an attractive tool to bind efficiently to viral epitopes, cryptic or not accessible to conventional antibodies. Here, we report a novel, generic approach that might lead to virus resistance based on the expression of camelid specific nanobodies against Broad bean mottle virus (BBMV). Eight nanobodies, recognizing BBMV with high specificity and affinity, were retrieved after phage display from a large ‘immune’ library constructed from an immunized Arabic camel. By an in vitro assay we demonstrate how three nanobodies attenuate the BBMV spreading in inoculated Vicia faba plants. Furthermore, the in planta transient expression of these three selected nanobodies confirms their virus neutralizing capacity. In conclusion, this report supports that plant resistance against viral infections can be achieved by the in vivo expression of camelid nanobodies.
      PubDate: 2015-02-04
  • Characterization of common and distinctive adjustments of wild barley leaf
           proteome under drought acclimation, heat stress and their combination
    • Abstract: Abstract In nature, plants are often exposed to combinations of different stresses at the same time, while in many laboratory studies of molecular stress induction phenomena, single stress responses are analyzed. This study aims to identify the common (i.e. more general stress-responsive) and the stress-specific adjustments of the leaf proteome of wild barley to two often co-occurring stress phenomena, i.e. in response to (long-term) drought acclimation (DA) or to (transient) heat stress (HS). In addition, we analyzed those alterations which are specific for the combination of both stresses. Leaf proteome analysis was performed using 2D difference gel electrophoresis followed by protein identification via mass spectrometry with a 1.5 threshold value of changes in relative protein contents. DA resulted in specific upregulation of proteins with cell detoxification functions, water homeostasis maintenance, amino acids synthesis and lipid metabolism and distinct forms of heat shock proteins (HSPs) and proteins with chaperon functions while proteins related to nitrogen metabolism were downregulated. This response was distinguished from the response to transient HS, which included upregulation of a broad range of HSP products. The common response to both stressors revealed upregulation of additional forms of HSPs and the downregulation of enzymes of the photosynthetic apparatus and chlorophyll binding proteins. The simultaneous exposure to both stress conditions resulted mostly in a combination of both stress responses and to unique abundance changes of proteins with yet unclear functions.
      PubDate: 2015-02-03
School of Mathematical and Computer Sciences
Heriot-Watt University
Edinburgh, EH14 4AS, UK
Tel: +00 44 (0)131 4513762
Fax: +00 44 (0)131 4513327
About JournalTOCs
News (blog, publications)
JournalTOCs on Twitter   JournalTOCs on Facebook

JournalTOCs © 2009-2015