for Journals by Title or ISSN
for Articles by Keywords

Publisher: Springer-Verlag   (Total: 2341 journals)

 A  B  C  D  E  F  G  H  I  J  K  L  M  N  O  P  Q  R  S  T  U  V  W  X  Y  Z  

We no longer collect new content from this publisher because the publisher has forbidden systematic access to its RSS feeds.
Journal Cover Plant Molecular Biology
  [SJR: 1.915]   [H-I: 137]   [9 followers]  Follow
   Hybrid Journal Hybrid journal (It can contain Open Access articles)
   ISSN (Print) 1573-5028 - ISSN (Online) 0167-4412
   Published by Springer-Verlag Homepage  [2341 journals]
  • The monomeric GTPase RabA2 is required for progression and maintenance of
           membrane integrity of infection threads during root nodule symbiosis
    • Authors: Virginia Dalla Via; Soledad Traubenik; Claudio Rivero; O. Mario Aguilar; María Eugenia Zanetti; Flavio Antonio Blanco
      Pages: 549 - 562
      Abstract: Key message Progression of the infection canal that conducts rhizobia to the nodule primordium requires a functional Rab GTPase located in Golgi/trans-Golgi that also participate in root hair polar growth. Common bean (Phaseolus vulgaris) symbiotically associates with its partner Rhizobium etli, resulting in the formation of root nitrogen-fixing nodules. Compatible bacteria can reach cortical cells in a tightly regulated infection process, in which the specific recognition of signal molecules is a key step to select the symbiotic partner. In this work, we show that RabA2, a monomeric GTPase from common bean, is required for the progression of the infection canal, referred to as the infection thread (IT), toward the cortical cells. Expression of miss-regulated mutant variants of RabA2 resulted in an increased number of abortive infection events, including bursting of ITs and a reduction in the number of nodules. Nodules formed in these plants were small and contained infected cells with disrupted symbiosome membranes, indicating either early senescence of these cells or defects in the formation of the symbiosome membrane during bacterial release. RabA2 localized to mobile vesicles around the IT, but mutations that affect GTP hydrolysis or GTP/GDP exchange modified this localization. Colocalization of RabA2 with ArfA1 and a Golgi marker indicates that RabA2 localizes in Golgi stacks and the trans-Golgi network. Our results suggest that RabA2 is part of the vesicle transport events required to maintain the integrity of the membrane during IT progression.
      PubDate: 2017-04-01
      DOI: 10.1007/s11103-016-0581-5
      Issue No: Vol. 93, No. 6 (2017)
  • The mobile RNAs, StBEL11 and StBEL29 , suppress growth of tubers in potato
    • Authors: Tejashree H. Ghate; Pooja Sharma; Kirtikumar R. Kondhare; David J. Hannapel; Anjan K. Banerjee
      Pages: 563 - 578
      Abstract: Key message We demonstrate that RNAs of StBEL11 and StBEL29 are phloem-mobile and function antagonistically to the growth-promoting characteristics of StBEL5 in potato. Both these RNAs appear to inhibit tuber growth by repressing the activity of target genes of StBEL5 in potato. Moreover, upstream sequence driving GUS expression in transgenic potato lines demonstrated that both StBEL11 and -29 promoter activity is robust in leaf veins, petioles, stems, and vascular tissues and induced by short days in leaves and stolons. Steady-state levels of their mRNAs were also enhanced by short-day conditions in selective organs. There are thirteen functional BEL1-like genes in potato that encode for a family of transcription factors (TF) ubiquitous in the plant kingdom. These BEL1 TFs work in tandem with KNOTTED1-types to regulate the expression of numerous target genes involved in hormone metabolism and growth processes. One of the StBELs, StBEL5, functions as a long-distance mRNA signal that is transcribed in leaves and moves into roots and stolons to stimulate growth. The two most closely related StBELs to StBEL5 are StBEL11 and -29. Together these three genes make up more than 70% of all StBEL transcripts present throughout the potato plant. They share a number of common features, suggesting they may be co-functional in tuber development. Upstream sequence driving GUS expression in transgenic potato lines demonstrated that both StBEL11 and -29 promoter activity is robust in leaf veins, petioles, stems, and vascular tissues and induced by short-days in leaves and stolons. Steady-state levels of their mRNAs were also enhanced by short-day conditions in specific organs. Using a transgenic approach and heterografting experiments, we show that both these StBELs inhibit growth in correlation with the long distance transport of their mRNAs from leaves to roots and stolons, whereas suppression lines of these two RNAs exhibited enhanced tuber yields. In summary, our results indicate that the RNAs of StBEL11 and StBEL29 are phloem-mobile and function antagonistically to the growth-promoting characteristics of StBEL5. Both these RNAs appear to inhibit growth in tubers by repressing the activity of target genes of StBEL5.
      PubDate: 2017-04-01
      DOI: 10.1007/s11103-016-0582-4
      Issue No: Vol. 93, No. 6 (2017)
  • Heme oxygenase 1 defects lead to reduced chlorophyll in Brassica napus
    • Authors: Lixia Zhu; Zonghui Yang; Xinhua Zeng; Jie Gao; Jie Liu; Bin Yi; Chaozhi Ma; Jinxiong Shen; Jinxing Tu; Tingdong Fu; Jing Wen
      Pages: 579 - 592
      Abstract: Abstract We previously described a Brassica napus chlorophyll-deficient mutant (ygl) with yellow-green seedling leaves and mapped the related gene, BnaC.YGL, to a 0.35 cM region. However, the molecular mechanisms involved in this chlorophyll defect are still unknown. In this study, the BnaC07.HO1 gene (equivalent to BnaC.YGL) was isolated by the candidate gene approach, and its function was confirmed by genetic complementation. Comparative sequencing analysis suggested that BnaC07.HO1 was lost in the mutant, while a long noncoding-RNA was inserted into the promoter of the homologous gene BnaA07.HO1. This insert was widely present in B. napus cultivars and down-regulated BnaA07.HO1 expression. BnaC07.HO1 was highly expressed in the seedling leaves and encoded heme oxygenase 1, which was localized in the chloroplast. Biochemical analysis showed that BnaC07.HO1 can catalyze heme conversion to form biliverdin IXα. RNA-seq analysis revealed that the loss of BnaC07.HO1 impaired tetrapyrrole metabolism, especially chlorophyll biosynthesis. According, the levels of chlorophyll intermediates were reduced in the ygl mutant. In addition, gene expression in multiple pathways was affected in ygl. These findings provide molecular evidences for the basis of the yellow-green leaf phenotype and further insights into the crucial role of HO1 in B. napus.
      PubDate: 2017-04-01
      DOI: 10.1007/s11103-017-0583-y
      Issue No: Vol. 93, No. 6 (2017)
  • Transcriptomic and hormone analyses reveal mechanisms underlying petal
           elongation in Chrysanthemum morifolium ‘Jinba’
    • Authors: Jingjing Wang; Haibin Wang; Lian Ding; Aiping Song; Feng Shen; Jiafu Jiang; Sumei Chen; Fadi Chen
      Pages: 593 - 606
      Abstract: Key message Auxin regulates chrysanthemum petal elongation by promoting cell elongation. Transcriptomic analysis shows that auxin signal transduction may connect with other transcription factors by TCPs to regulate chrysanthemum petal elongation. As an ornamental species, Chrysanthemum morifolium has high ornamental and economic value. Petal size is the primary factor that influences the ornamental value of chrysanthemum, but the mechanism underlying the development of C. morifolium petals remains unclear. In our study, we tracked the growth of petals and found that the basal region of ‘Jinba’ petals showed a higher elongation rate, exhibiting rapid cell elongation during petal growth. During petal elongation growth, auxin was demonstrated to promote cell elongation and an increase in cell numbers in the petal basal region. To further study the molecular mechanisms underlying petal growth, the RNA-seq (high-throughput cDNA sequencing) technique was employed. Four cDNA libraries were assembled from petals in the budding, bud breaking, early blooming and full blooming stages of ‘Jinba’ flower development. Analysis of differentially expressed genes (DEGs) showed that auxin was the most important regulator in controlling petal growth. The TEOSINTEBRANCHED 1, CYCLOIDEA and PCF transcription factor genes (TCPs), basic helix-loop-helix-encoding gene (bHLH), glutaredoxin-C (GRXC) and other zinc finger protein genes exhibited obvious up-regulation and might have significant effects on the growth of ‘Jinba’ petals. Given the interaction between these genes in Arabidopsis thaliana, we speculated that auxin signal transduction might exhibit a close relationship with transcription factors through TCPs. In summary, we present the first comprehensive transcriptomic and hormone analyses of C. morifolium petals. The results offer direction in identifying the mechanism underlying the development of chrysanthemum petals in the elongated phase and have great significance in improving the ornamental characteristics of C. morifolium via molecular breeding.
      PubDate: 2017-04-01
      DOI: 10.1007/s11103-017-0584-x
      Issue No: Vol. 93, No. 6 (2017)
  • Inducible expression of Bs2 R gene from Capsicum chacoense in sweet orange
           ( Citrus sinensis L. Osbeck) confers enhanced resistance to citrus canker
    • Authors: Lorena Noelia Sendín; Ingrid Georgina Orce; Rocío Liliana Gómez; Ramón Enrique; Carlos Froilán Grellet Bournonville; Aldo Sergio Noguera; Adrián Alberto Vojnov; María Rosa Marano; Atilio Pedro Castagnaro; María Paula Filippone
      Pages: 607 - 621
      Abstract: Abstract Transgenic expression of the pepper Bs2 gene confers resistance to Xanthomonas campestris pv. vesicatoria (Xcv) pathogenic strains which contain the avrBs2 avirulence gene in susceptible pepper and tomato varieties. The avrBs2 gene is highly conserved among members of the Xanthomonas genus, and the avrBs2 of Xcv shares 96% homology with the avrBs2 of Xanthomonas citri subsp. citri (Xcc), the causal agent of citrus canker disease. A previous study showed that the transient expression of pepper Bs2 in lemon leaves reduced canker formation and induced plant defence mechanisms. In this work, the effect of the stable expression of Bs2 gene on citrus canker resistance was evaluated in transgenic plants of Citrus sinensis cv. Pineapple. Interestingly, Agrobacterium-mediated transformation of epicotyls was unsuccessful when a constitutive promoter (2× CaMV 35S) was used in the plasmid construction, but seven transgenic lines were obtained with a genetic construction harbouring Bs2 under the control of a pathogen-inducible promoter, from glutathione S-transferase gene from potato. A reduction of disease symptoms of up to 70% was observed in transgenic lines expressing Bs2 with respect to non-transformed control plants. This reduction was directly dependent on the Xcc avrBs2 gene since no effect was observed when a mutant strain of Xcc with a disruption in avrBs2 gene was used for inoculations. Additionally, a canker symptom reduction was correlated with levels of the Bs2 expression in transgenic plants, as assessed by real-time qPCR, and accompanied by the production of reactive oxygen species. These results indicate that the pepper Bs2 resistance gene is also functional in a family other than the Solanaceae, and could be considered for canker control.
      PubDate: 2017-04-01
      DOI: 10.1007/s11103-017-0586-8
      Issue No: Vol. 93, No. 6 (2017)
  • Depletion of abscisic acid levels in roots of flooded Carrizo citrange (
           Poncirus trifoliata L. Raf. × Citrus sinensis L. Osb.) plants is a
           stress-specific response associated to the differential expression of
           PYR/PYL/RCAR receptors
    • Authors: Vicent Arbona; Sara I. Zandalinas; Matías Manzi; Miguel González-Guzmán; Pedro L. Rodriguez; Aurelio Gómez-Cadenas
      Pages: 623 - 640
      Abstract: Abstract Soil flooding reduces root abscisic acid (ABA) levels in citrus, conversely to what happens under drought. Despite this reduction, microarray analyses suggested the existence of a residual ABA signaling in roots of flooded Carrizo citrange seedlings. The comparison of ABA metabolism and signaling in roots of flooded and water stressed plants of Carrizo citrange revealed that the hormone depletion was linked to the upregulation of CsAOG, involved in ABA glycosyl ester (ABAGE) synthesis, and to a moderate induction of catabolism (CsCYP707A, an ABA 8′-hydroxylase) and buildup of dehydrophaseic acid (DPA). Drought strongly induced both ABA biosynthesis and catabolism (CsNCED1, 9-cis-neoxanthin epoxycarotenoid dioxygenase 1, and CsCYP707A) rendering a significant hormone accumulation. In roots of flooded plants, restoration of control ABA levels after stress release was associated to the upregulation of CsBGLU18 (an ABA β-glycosidase) that cleaves ABAGE. Transcriptional profile of ABA receptor genes revealed a different induction in response to soil flooding (CsPYL5) or drought (CsPYL8). These two receptor genes along with CsPYL1 were cloned and expressed in a heterologous system. Recombinant CsPYL5 inhibited ΔNHAB1 activity in vitro at lower ABA concentrations than CsPYL8 or CsPYL1, suggesting its better performance under soil flooding conditions. Both stress conditions induced ABA-responsive genes CsABI5 and CsDREB2A similarly, suggesting the occurrence of ABA signaling in roots of flooded citrus seedlings. The impact of reduced ABA levels in flooded roots on CsPYL5 expression along with its higher hormone affinity reinforce the role of this ABA receptor under soil-flooding conditions and explain the expression of certain ABA-responsive genes.
      PubDate: 2017-04-01
      DOI: 10.1007/s11103-017-0587-7
      Issue No: Vol. 93, No. 6 (2017)
  • In Arabidopsis thaliana distinct alleles encoding mitochondrial RNA
           PROCESSING FACTOR 4 support the generation of additional 5′ termini of
           ccmB transcripts
    • Authors: Katrin Stoll; Christian Jonietz; Sarah Schleicher; Catherine Colas des Francs-Small; Ian Small; Stefan Binder
      Pages: 659 - 668
      Abstract: Abstract In plant mitochondria, the 5′ ends of many transcripts are generated post-transcriptionally. We show that the pentatricopeptide repeat (PPR) protein RNA PROCESSING FACTOR 4 (RPF4) supports the generation of extra 5′ ends of ccmB transcripts in Landsberg erecta (Ler) and a number of other Arabidopsis thaliana ecotypes. RPF4 was identified in Ler applying a forward genetic approach supported by complementation studies of ecotype Columbia (Col), which generates the Ler-type extra ccmB 5′ termini only after the introduction of the RPF4 allele from Ler. Studies with chimeric RPF4 proteins composed of various parts of the RPF4 proteins from Ler and Col identified differences in the N-terminal and central PPR motifs that explain ecotype-specific variations in ccmB processing. These results fit well with binding site predictions in ccmB transcripts based on the known determinants of nucleotide base recognition by PPR motifs.
      PubDate: 2017-04-01
      DOI: 10.1007/s11103-017-0591-y
      Issue No: Vol. 93, No. 6 (2017)
  • CBF2A – CBF4B genomic region copy numbers alongside the circadian clock
           play key regulatory mechanisms driving expression of FR-H2 CBF s
    • Abstract: Abstract The C-Repeat Binding Factors (CBFs) are DNA-binding transcriptional activators that were identified using Arabidopsis thaliana. In barley, Hordeum vulgare, a cluster of CBF genes reside at FROST RESISTANCE-H2, one of two loci having major effects on winter-hardiness. FR-H2 was revealed in a population derived from the winter barley ‘Nure’ and the spring barley ‘Trèmois’. ‘Nure’ harbors two to three copies of CBF2A and CBF4B as a consequence of tandem iteration of the genomic region encompassing these genes whereas ‘Trèmois’ harbors single copies, and these copy number differences are associated with their transcript level differences. Here we explore further the relationship between FR-H2 CBF gene copy number and transcript levels using ‘Admire’, a winter barley accumulating FR-H2 CBF gene transcripts to very high levels, and a group of lines related to ‘Admire’ through descent. DNA blot hybridization indicated the CBF2A–CBF4B genomic region is present in 7–8 copies in ‘Admire’ and is highly variable in copy number across the lines related to ‘Admire’. At normal growth temperatures transcript levels of CBF12, CBF14, and CBF16 were higher in lines having greater CBF2A–CBF4B genomic region copy numbers than in lines having fewer copy numbers at peak expression level time points controlled by the circadian clock. Chromatin immunoprecipitation indicated CBF2 was at the CBF12 and CBF16 promoters at normal growth temperatures. These data support a scenario in which CBF2A–CBF4B genomic region copy numbers affect expression of other FR–H2 CBFs through a mechansim in which these other FR-H2 CBFs are activated by those in the copy number variable unit.
      PubDate: 2017-04-22
  • Analysis of global gene expression profiles during the flowering
           initiation process of Lilium  ×  formolongi
    • Abstract: Abstract The onset of flowering is critical for the reproductive development of plants. Lilium × formolongi is a lily hybrid that flowers within a year after sowing. We successfully identified four important stages during vegetative growth and flowering initiation of L. × formolongi under long day conditions. The plant tissues from the four stages were used in a genome-wide transcriptional analysis to investigate stage-specific changes of gene expression in L. × formolongi. In total, the sequence reads of the four RNA-sequencing libraries were assembled into 52,824 unigenes, of which 37,031 (70.10%) were differentially expressed. The global expression dynamics of the differentially expressed genes were predominant in flowering induction phase I and the floral differentiation stage, but down-regulated in flowering induction phase II. Various transcription factor families relevant to flowering were elucidated, and the members of the MADS-box, SBP and CO-like transcription factor families were the most represented. There were 85 differentially expressed genes relevant to flowering. CONSTANS-LIKE, FLOWERING LOCUS T, TREHALOSE-6-PHOSPHATE SYNTHASE and SQUAMOSA PROMOTER BINDING PROTEIN-LIKE homologs were discovered and may play significant roles in the flowering induction and transition process of L. × formolongi. A putative gene regulatory network, including photoperiod, age-dependent and trehalose-6-phosphate flowering pathways, was constructed. This is the first expression dataset obtained from a transcriptome analysis of photoperiod-mediated flowering pathway in lily, and it is valuable for the exploration of the molecular mechanisms of flowering initiation and the short vegetative stage of L. × formolongi.
      PubDate: 2017-04-20
  • Transcriptomic analysis of molecular responses in Malus domestica
           ‘M26’ roots affected by apple replant disease
    • Abstract: Key message Gene expression studies in roots of apple replant disease affected plants suggested defense reactions towards biotic stress to occur which did not lead to adequate responses to the biotic stressors. Apple replant disease (ARD) leads to growth inhibition and fruit yield reduction in replanted populations and results in economic losses for tree nurseries and fruit producers. The etiology is not well understood on a molecular level and causal agents show a great diversity indicating that no definitive cause, which applies to the majority of cases, has been found out yet. Hence, it is pivotal to gain a better understanding of the molecular and physiological reactions of the plant when affected by ARD and later to overcome the disease, for example by developing tolerant rootstocks. For the first time, gene expression was investigated in roots of ARD affected plants employing massive analysis of cDNA ends (MACE) and RT-qPCR. In reaction to ARD, genes in secondary metabolite production as well as plant defense, regulatory and signaling genes were upregulated whereas for several genes involved in primary metabolism lower expression was detected. For internal verification of MACE data, candidate genes were tested via RT-qPCR and a strong positive correlation between both datasets was observed. Comparison of apple ‘M26’ roots cultivated in ARD soil or γ-irradiated ARD soil suggests that typical defense reactions towards biotic stress take place in ARD affected plants but they did not allow responding to the biotic stressors attack adequately, leading to the observed growth depressions in ARD variants.
      PubDate: 2017-04-19
  • An integrative overview of the molecular and physiological responses of
           sugarcane under drought conditions
    • Abstract: Abstract Drought is the main abiotic stress constraining sugarcane production. However, our limited understanding of the molecular mechanisms involved in the drought stress responses of sugarcane impairs the development of new technologies to increase sugarcane drought tolerance. Here, an integrated approach was performed to reveal the molecular and physiological changes in two closely related sugarcane cultivars, including the most extensively planted cultivar in Brazil (cv. RB867515), in response to moderate (−0.5 MPa) and severe (−1 MPa) drought stress at the transcriptional, translational, and posttranslational levels. The results show common and cultivar exclusive changes in specific genes related to photosynthesis, carbohydrate, amino acid, and phytohormone metabolism. The novel phosphoproteomics and redox proteomic analysis revealed the importance of posttranslational regulation mechanisms during sugarcane drought stress. The shift to soluble sugar, secondary metabolite production, and activation of ROS eliminating processes in response to drought tolerance were mechanisms exclusive to cv. RB867515, helping to explain the better performance and higher production of this cultivar under these stress conditions.
      PubDate: 2017-04-13
      DOI: 10.1007/s11103-017-0611-y
  • Genomic and functional characterization of coleopteran insect-specific
           α-amylase inhibitor gene from Amaranthus species
    • Abstract: Abstract The smallest 32 amino acid α-amylase inhibitor from Amaranthus hypochondriacus (AAI) is reported. The complete gene of pre-protein (AhAI) encoding a 26 amino acid (aa) signal peptide followed by the 43 aa region and the previously identified 32 aa peptide was cloned successfully. Three cysteine residues and one disulfide bond conserved within known α-amylase inhibitors were present in AhAI. Identical genomic and open reading frame was found to be present in close relatives of A. hypochondriacus namely Amaranthus paniculatus, Achyranthes aspera and Celosia argentea. Interestingly, the 3′UTR of AhAI varied in these species. The highest expression of AhAI was observed in A. hypochondriacus inflorescence; however, it was not detected in the seed. We hypothesized that the inhibitor expressed in leaves and inflorescence might be transported to the seeds. Sub-cellular localization studies clearly indicated the involvement of AhAI signal peptide in extracellular secretion. Full length rAhAI showed differential inhibition against α-amylases from human, insects, fungi and bacteria. Particularly, α-amylases from Helicoverpa armigera (Lepidoptera) were not inhibited by AhAI while Tribolium castaneum and Callosobruchus chinensis (Coleoptera) α-amylases were completely inhibited. Molecular docking of AhAI revealed tighter interactions with active site residues of T. castaneum α-amylase compared to C. chinensis α-amylase, which could be the rationale behind the disparity in their IC50. Normal growth, development and adult emergence of C. chinensis were hampered after feeding on rAhAI. Altogether, the ability of AhAI to affect the growth of C. chinensis demonstrated its potential as an efficient bio-control agent, especially against stored grain pests.
      PubDate: 2017-04-12
      DOI: 10.1007/s11103-017-0609-5
  • Arabidopsis ABI5 plays a role in regulating ROS homeostasis by activating
           CATALASE 1 transcription in seed germination
    • Authors: Chao Bi; Yu Ma; Zhen Wu; Yong-Tao Yu; Shan Liang; Kai Lu; Xiao-Fang Wang
      Abstract: Abstract It has been known that ABA INSENSITIVE 5 (ABI5) plays a vital role in regulating seed germination. In the present study, we showed that inhibition of the catalase activity with 3-amino-1,2,4-triazole (3-AT) inhibits seed germination of Col-0, abi5 mutants and ABI5-overexpression transgenic lines. Compared with Col-0, the seeds of abi5 mutants showed more sensitive to 3-AT during seed germination, while the seeds of ABI5-overexpression transgenic lines showed more insensitive. H2O2 showed the same effect on seed germination of Col-0, abi5 mutants and ABI5-overexpression transgenic lines as 3-AT. These results suggest that ROS is involved in the seed germination mediated by ABI5. Further, we observed that T-DNA insertion mutants of the three catalase members in Arabidopsis displayed 3-AT-insensitive or -hypersensitive phenotypes during seed germination, suggesting that these catalase members regulate ROS homeostasis in a highly complex way. ABI5 affects reactive oxygen species (ROS) homeostasis by affecting CATALASE expression and catalase activity. Furthermore, we showed that ABI5 directly binds to the CAT1 promoter and activates CAT1 expression. Genetic evidence supports the idea that CAT1 functions downstream of ABI5 in ROS signaling during seed germination. RNA-sequencing analysis indicates that the transcription of the genes involved in ROS metabolic process or genes responsive to ROS stress is impaired in abi5-1 seeds. Additionally, expression changes in some genes correlative to seed germination were showed due to the change in ABI5 expression under 3-AT treatment. Together, all the findings suggest that ABI5 regulates seed germination at least partly by affecting ROS homeostasis.
      PubDate: 2017-04-08
      DOI: 10.1007/s11103-017-0603-y
  • Comparison of phytohormone levels and transcript profiles during seasonal
           dormancy transitions in underground adventitious buds of leafy spurge
    • Authors: Wun S. Chao; Münevver Doğramacı; David P. Horvath; James V. Anderson; Michael E. Foley
      Abstract: Abstract Leafy spurge (Euphorbia esula L.) is an herbaceous perennial weed that maintains its perennial growth habit through generation of underground adventitious buds (UABs) on the crown and lateral roots. These UABs undergo seasonal phases of dormancy under natural conditions, namely para-, endo-, and ecodormancy in summer, fall, and winter, respectively. These dormancy phases can also be induced in growth chambers by manipulating photoperiod and temperature. In this study, UABs induced into the three phases of dormancy under controlled conditions were used to compare changes in phytohormone and transcriptome profiles. Results indicated that relatively high levels of ABA, the ABA metabolite PA, and IAA were found in paradormant buds. When UABs transitioned from para- to endodormancy, ABA and PA levels decreased, whereas IAA levels were maintained. Additionally, transcript profiles associated with regulation of soluble sugars and ethylene activities were also increased during para- to endodormancy transition, which may play some role in maintaining endodormancy status. When crown buds transitioned from endo- to ecodormancy, the ABA metabolites PA and DPA decreased significantly along with the down-regulation of ABA biosynthesis genes, ABA2 and NCED3. IAA levels were also significantly lower in ecodormant buds than that of endodormant buds. We hypothesize that extended cold treatment may trigger physiological stress in endodormant buds, and that these stress-associated signals induced the endo- to ecodormancy transition and growth competence. The up-regulation of NAD/NADH phosphorylation and dephosphorylation pathway, and MAF3-like and GRFs genes, may be considered as markers of growth competency.
      PubDate: 2017-04-01
      DOI: 10.1007/s11103-017-0607-7
  • In silico analysis of the sequence features responsible for alternatively
           spliced introns in the model green alga Chlamydomonas reinhardtii
    • Authors: Praveen-Kumar Raj-Kumar; Olivier Vallon; Chun Liang
      Abstract: Abstract Alternatively spliced introns are the ones that are usually spliced but can be occasionally retained in a transcript isoform. They are the most frequently used alternative splice form in plants (~50% of alternative splicing events). Chlamydomonas reinhardtii, a unicellular alga, is a good model to understand alternative splicing (AS) in plants from an evolutionary perspective as it diverged from land plants a billion years ago. Using over 7 million cDNA sequences from both pyrosequencing and Sanger sequencing, we found that a much higher percentage of genes (~20% of multi-exon genes) undergo AS than previously reported (3–5%). We found a full component of SR and SR-like proteins possibly involved in AS. The most prevalent type of AS event (40%) was retention of introns, most of which were supported by multiple cDNA evidence (72%) while only 20% of them have coding capacity. By comparing retained and constitutive introns, we identified sequence features potentially responsible for the retention of introns, in the framework of an “intron definition” model for splicing. We find that retained introns tend to have a weaker 5′ splice site, more Gs in their poly-pyrimidine tract and a lesser conservation of nucleotide ‘C’ at position −3 of the 3′ splice site. In addition, the sequence motifs found in the potential branch-point region differed between retained and constitutive introns. Furthermore, the enrichment of G-triplets and C-triplets among the first and last 50 nt of the introns significantly differ between constitutive and retained introns. These could serve as intronic splicing enhancers. All the alternative splice forms can be accessed at'db=Chre_AS.
      PubDate: 2017-03-31
      DOI: 10.1007/s11103-017-0605-9
  • Boron-bridged RG-II and calcium are required to maintain the pectin
           network of the Arabidopsis seed mucilage ultrastructure
    • Authors: Da-chuan Shi; Juan Wang; Rui-bo Hu; Gong-ke Zhou; Malcolm A. O’Neill; Ying-zhen Kong
      Abstract: Abstract The structure of a pectin network requires both calcium (Ca2+) and boron (B). Ca2+ is involved in crosslinking pectic polysaccharides and arbitrarily induces the formation of an “egg-box” structure among pectin molecules, while B crosslinks rhamnogalacturonan II (RG-II) side chain A apiosyl residues in primary cell walls to generate a borate-dimeric-rhamnogalacturonan II (dRG-II-B) complex through a boron-bridge bond, leading to the formation of a pectin network. Based on recent studies of dRG-II-B structures, a hypothesis has been proposed suggesting that Ca2+is a common component of the dRG-II-B complex. However, no in vivo evidence has addressed whether B affects the stability of Ca2+ crosslinks. Here, we investigated the L-fucose-deficient dwarf mutant mur1, which was previously shown to require exogenous B treatment for phenotypic reversion. Imbibed Arabidopsis thaliana seeds release hydrated polysaccharides to form a halo of seed mucilage covering the seed surface, which consists of a water-soluble outer layer and an adherent inner layer. Our study of mur1 seed mucilage has revealed that the pectin in the outer layer of mucilage was relocated to the inner layer. Nevertheless, the mur1 inner mucilage was more vulnerable to rough shaking or ethylene diamine tetraacetic acid (EDTA) extraction than that of the wild type. Immunolabeling analysis suggested that dRG-II-B was severely decreased in mur1 inner mucilage. Moreover, non-methylesterified homogalacturonan (HG) exhibited obvious reassembly in the mur1 inner layer compared with the wild type, which may imply a possible connection between dRG-II-B deficiency and pectin network transformation in the seed mucilage. As expected, the concentration of B in the mur1 inner mucilage was reduced, whereas the distribution and concentration of Ca2+in the inner mucilage increased significantly, which could be the reason why pectin relocates from the outer mucilage to the inner mucilage. Consequently, the disruption of B bridges appears to result in the extreme sensitivity of the mur1 mucilage pectin complex to EDTA extraction, despite the reinforcement of the pectin network by excessive Ca2+. Therefore, we propose a hypothesis that B, in the form of dRG-II-B, works together with Ca2+to maintain pectin network crosslinks and ultimately the mucilage ultrastructure in seed mucilage. This work may serve to complement our current understanding of mucilage configuration.
      PubDate: 2017-03-31
      DOI: 10.1007/s11103-017-0606-8
  • Overexpression of OsGATA12 regulates chlorophyll content, delays plant
           senescence and improves rice yield under high density planting
    • Authors: Guangwen Lu; José A. Casaretto; Shan Ying; Kashif Mahmood; Fang Liu; Yong-Mei Bi; Steven J. Rothstein
      Abstract: Abstract Agronomic traits controlling the formation, architecture and physiology of source and sink organs are main determinants of rice productivity. Semi-dwarf rice varieties with low tiller formation but high seed production per panicle and dark green and thick leaves with prolonged source activity are among the desirable traits to further increase the yield potential of rice. Here, we report the functional characterization of a zinc finger transcription factor, OsGATA12, whose overexpression causes increased leaf greenness, reduction of leaf and tiller number, and affects yield parameters. Reduced tillering allowed testing the transgenic plants under high density which resulted in significantly increased yield per area and higher harvest index compared to wild-type. We show that delayed senescence of transgenic plants and the corresponding longer stay-green phenotype is mainly due to increased chlorophyll and chloroplast number. Further, our work postulates that the increased greenness observed in the transgenic plants is due to more chlorophyll synthesis but most significantly to decreased chlorophyll degradation, which is supported by the reduced expression of genes involved in the chlorophyll degradation pathway. In particular we show evidence for the down-regulation of the STAY GREEN RICE gene and in vivo repression of its promoter by OsGATA12, which suggests a transcriptional repression function for a GATA transcription factor for prolonging the onset of senescence in cereals.
      PubDate: 2017-03-24
      DOI: 10.1007/s11103-017-0604-x
  • INDETERMINATE DOMAIN PROTEIN binding sequences in the 5′-untranslated
           region and promoter of the SCARECROW gene play crucial and distinct roles
           in regulating SCARECROW expression in roots and leaves
    • Authors: Atsushi Kobayashi; Satoshi Miura; Akiko Kozaki
      Abstract: Abstract SCARECROW (SCR) and SHORT-ROOT (SHR), which belong to the GRAS transcription factor family, are key regulators of root and leaf growth and development. Despite the importance of SCR expression for proper plant development, the mechanism of SCR regulation has not been clarified. A previous study showed that an INDETERMINATE DOMAIN transcription factor, JACKDAW (JKD), is essential for the expression of SCR in combination with SCR and SHR. In this study, we characterized possible binding sequences of INDETERMINATE DOMAIN PROTEIN in the 1.5 kb upstream region of SCR. Mutation in a binding sequence 340 bp upstream of the ATG increased transcriptional activation by JKD in transient assays using Arabidopsis cultured cells. However, the activity was not enhanced by SCR/SHR. Histochemical analysis of promoter activity in transgenic Arabidopsis plants carrying a fusion of the promoter and the β-glucronidase reporter gene showed that mutation of the −340 bp sequence eliminated most of the promoter activity, indicating that this sequence was indispensable for SCR expression. Promoter deletion of downstream sequences from −280 bp lost the enhanced activity by SCR/SHR in transient assays and activity in root tips and the bundle sheath (BS) in plants. Conversely, mutation at −480 bp did not significantly influence transcriptional activity in transient assays. However, most of SCR expression was lost except for the root tip in plants. The sequences around −1 kb appeared to regulate SCR expression negatively in plants. Together, these INDETERMINATE DOMAIN PROTEIN binding sequences have crucial and distinct functions in regulating SCR expression.
      PubDate: 2017-03-21
      DOI: 10.1007/s11103-016-0578-0
  • The small auxin-up RNA OsSAUR45 affects auxin synthesis and transport in
    • Authors: Yan-Xia Xu; Meng-Zhu Xiao; Yan Liu; Jun-Liang Fu; Yi He; De-An Jiang
      Abstract: Key message This research is the first to demonstrate that OsSAUR45 is involved in plant growth though affecting auxin synthesis and transport by repressing OsYUCCA and OsPIN gene expression in rice. Small auxin-up RNAs (SAURs) comprise a large multigene family and are rapidly activated as part of the primary auxin response in plants. However, little is known about the role of SAURs in plant growth and development, especially in monocots. Here, we report the biological function of OsSAUR45 in the model plant rice (Oryza sativa). OsSAUR45 is expressed in a tissue-specific pattern and is localized to the cytoplasm. Rice lines overexpressing OsSAUR45 displayed pleiotropic developmental defects including reduced plant height and primary root length, fewer adventitious roots, narrower leaves, and reduced seed setting. Auxin levels and transport were reduced in the OsSAUR45 overexpression lines, potentially because of decreased expression of Flavin-binding monooxygenase family proteins (OsYUCCAs) and PIN-FORMED family proteins (OsPINs). Exogenous auxin application rapidly induced OsSAUR45 expression and partially restored the phenotype of rice lines overexpressing OsSAUR45. These results demonstrate that OsSAUR45 is involved in plant growth by affecting auxin synthesis and transport through the repression of OsYUCCA and OsPIN gene expression in rice.
      PubDate: 2017-03-20
      DOI: 10.1007/s11103-017-0595-7
  • Isolation and functional characterization of a methyl jasmonate-responsive
           3-carene synthase from Lavandula x intermedia
    • Authors: Ayelign M. Adal; Lukman S. Sarker; Ashley D. Lemke; Soheil S. Mahmoud
      Abstract: Key message A methyl jasmonate responsive 3-carene synthase (Li3CARS) gene was isolated from Lavandula x intermedia and functionally characterized in vitro. Lavenders produce essential oils consisting mainly of monoterpenes, including the potent antimicrobial and insecticidal monoterpene 3-carene. In this study we isolated and functionally characterized a leaf-specific, methyl jasmonate (MeJA)-responsive monoterpene synthase (Li3CARS) from Lavandula x intermedia. The ORF excluding transit peptides encoded a 64.9 kDa protein that was expressed in E. coli, and purified with Ni–NTA agarose affinity chromatography. The recombinant Li3CARS converted GPP into 3-carene as the major product, with K m and k cat of 3.69 ± 1.17 µM and 2.01 s−1 respectively. Li3CARS also accepted NPP as a substrate to produce multiple products including a small amount of 3-carene. The catalytic efficiency of Li3CARS to produce 3-carene was over ten fold higher for GPP (k cat /K m = 0.56 µM−1s−1) than NPP (k cat /K m = 0.044 µM−1s−1). Production of distinct end product profiles from different substrates (GPP versus NPP) by Li3CARS indicates that monoterpene metabolism may be controlled in part through substrate availability. Li3CARS transcripts were found to be highly abundant in leaves (16-fold) as compared to flower tissues. The transcriptional activity of Li3CARS correlated with 3-carene production, and was up-regulated (1.18- to 3.8-fold) with MeJA 8–72 h post-treatment. The results suggest that Li3CARS may have a defensive role in Lavandula.
      PubDate: 2017-03-03
      DOI: 10.1007/s11103-017-0588-6
School of Mathematical and Computer Sciences
Heriot-Watt University
Edinburgh, EH14 4AS, UK
Tel: +00 44 (0)131 4513762
Fax: +00 44 (0)131 4513327
Home (Search)
Subjects A-Z
Publishers A-Z
Your IP address:
About JournalTOCs
News (blog, publications)
JournalTOCs on Twitter   JournalTOCs on Facebook

JournalTOCs © 2009-2016