for Journals by Title or ISSN
for Articles by Keywords

Publisher: Springer-Verlag   (Total: 2209 journals)

 A  B  C  D  E  F  G  H  I  J  K  L  M  N  O  P  Q  R  S  T  U  V  W  X  Y  Z  

  First | 16 17 18 19 20 21 22 23     

The end of the list has been reached. Please navigate to previous pages.

  First | 16 17 18 19 20 21 22 23     

Journal Cover Plant Molecular Biology
   Journal TOC RSS feeds Export to Zotero [10 followers]  Follow    
   Hybrid Journal Hybrid journal (It can contain Open Access articles)
     ISSN (Print) 1573-5028 - ISSN (Online) 0167-4412
     Published by Springer-Verlag Homepage  [2209 journals]   [SJR: 1.769]   [H-I: 112]
  • Identification and functional roles of CaDIN1 in abscisic acid signaling
           and drought sensitivity
    • Abstract: Abstract Plants frequently face challenges caused by various abiotic stresses, including drought, and have evolved defense mechanisms to counteract the deleterious effects of these stresses. The phytohormone abscisic acid (ABA) is involved in signal transduction pathways that mediate defense responses of plants to abiotic stress. Here, we report a new function of the CaDIN1 protein in defense responses to abiotic stress. The CaDIN1 gene was strongly induced in pepper leaves exposed to ABA, NaCl, and drought stresses. CaDIN1 proteins share high sequence homology with other known DIN1 proteins and are localized in chloroplasts. We generated CaDIN1-silenced peppers and overexpressing transgenic Arabidopsis plants and evaluated their response to ABA and drought stress. Virus-induced gene silencing of CaDIN1 in pepper plants conferred enhanced tolerance to drought stress, which was accompanied by low levels of lipid peroxidation in dehydrated leaves. CaDIN1-overexpressing transgenic plants exhibited reduced sensitivity to ABA during seed germination and seedling stages. Transgenic plants were more vulnerable to drought than that by the wild-type plants because of decreased expression of ABA responsive stress-related genes and reduced stomatal closure in response to ABA. Together, these results suggest that CaDIN1 modulates drought sensitivity through ABA-mediated cell signaling.
      PubDate: 2014-11-01
  • Functions of EDS1 - like and PAD4 genes in grapevine defenses against
           powdery mildew
    • Abstract: Abstract The molecular interactions between grapevine and the obligate biotrophic fungus Erysiphe necator are not understood in depth. One reason for this is the recalcitrance of grapevine to genetic modifications. Using defense-related Arabidopsis mutants that are susceptible to pathogens, we were able to analyze key components in grapevine defense responses. We have examined the functions of defense genes associated with the salicylic acid (SA) pathway, including ENHANCED DISEASE SUSCEPTIBILITY 1 (EDS1), EDS1-LIKE 2 (EDL2), EDL5 and PHYTOALEXIN DEFICIENT 4 (PAD4) of two grapevine species, Vitis vinifera cv. Cabernet Sauvignon, which is susceptible to E. necator, and V. aestivalis cv. Norton, which is resistant. Both VaEDS1 and VvEDS1 were previously found to functionally complement the Arabidopsis eds1-1 mutant. Here we show that the promoters of both VaEDS1 and VvEDS1 were induced by SA, indicating that the heightened defense of Norton is related to its high SA level. Other than Va/VvEDS1, only VaEDL2 complemented Arabidopsis eds1-1, whereas Va/VvPAD4 did not complement Arabidopsis pad4-1. Bimolecular fluorescence complementation results indicated that Vitis EDS1 and EDL2 proteins interact with Vitis PAD4 and AtPAD4, suggesting that Vitis EDS1/EDL2 forms a complex with PAD4 to confer resistance, as is known from Arabidopsis. However, Vitis EDL5 and PAD4 did not interact with Arabidopsis EDS1 or PAD4, correlating with their inability to function in Arabidopsis. Together, our study suggests a more complicated EDS1/PAD4 module in grapevine and provides insight into molecular mechanisms that determine disease resistance levels in Vitis species native to the North American continent.
      PubDate: 2014-11-01
  • A novel protein elicitor (SsCut) from Sclerotinia sclerotiorum induces
           multiple defense responses in plants
    • Abstract: In this study, we report the cloning of the SsCut gene encoding cutinase from Sclerotinia sclerotiorum. We isolated a 609-bp cDNA encoding a polypeptide of 202 amino acids with a molecular weight of 20.4 kDa. Heterologous expression of SsCut in Escherichia coli (His-SsCut) caused the formation of lesions in tobacco that closely resembled hypersensitive response lesions. Mutational analysis identified the C-terminal-half peptide and the same amino acids indispensable for both enzyme and elicitor activity. His-SsCut was caused cell death in Arabidopsis, soybean (Glycine max), oilseed rape (Brassica napus), rice (Oryza sativa), maize (Zea mays), and wheat (Triticum aestivum), indicating that both dicot and monocot species are responsive to the elicitor. Furthermore, the elicitation of tobacco was effective in the induction of the activities of hydrogen peroxide, phenylalanine ammonia-lyase, peroxides, and polyphenol oxidase. His-SsCut-treated plants exhibited enhanced resistance as indicated by a significant reduction in the number and size of S. sclerotiorum, Phytophthora sojae, and P. nicotianae lesions on leaves relative to controls. Real-time PCR results indicated that the expression of defense-related genes and genes involved in signal transduction were induced by His-SsCut. Our results demonstrate that SsCut is an elicitor that triggers defense responses in plants and will help to clarify its relationship to downstream signaling pathways that induce defense responses.
      PubDate: 2014-11-01
  • Dehydration-induced endodormancy in crown buds of leafy spurge highlights
           involvement of MAF3- and RVE1-like homologs, and hormone signaling
    • Abstract: Vegetative shoot growth from underground adventitious buds of leafy spurge is critical for survival of this invasive perennial weed after episodes of severe abiotic stress. To determine the impact that dehydration-stress has on molecular mechanisms associated with vegetative reproduction of leafy spurge, greenhouse plants were exposed to mild- (3-day), intermediate- (7-day), severe- (14-day) and extended- (21-day) dehydration treatments. Aerial tissues of treated plants were then decapitated and soil was rehydrated to determine the growth potential of underground adventitious buds. Compared to well-watered plants, mild-dehydration accelerated new vegetative shoot growth, whereas intermediate- through extended-dehydration treatments both delayed and reduced shoot growth. Results of vegetative regrowth further confirmed that 14 days of dehydration induced a full-state of endodormancy in crown buds, which was correlated with a significant (P < 0.05) change in abundance of 2,124 transcripts. Sub-network enrichment analyses of transcriptome data obtained from the various levels of dehydration treatment also identified central hubs of over-represented genes involved in processes such as hormone signaling (i.e., ABA, auxin, ethylene, GA, and JA), response to abiotic stress (DREB1A/2A, RD22) and light (PIF3), phosphorylation (MPK4/6), circadian regulation (CRY2, PHYA), and flowering (AGL20, AP2, FLC). Further, results from this and previous studies highlight homologs most similar to Arabidopsis HY5, MAF3, RVE1 and RD22 as potential molecular markers for endodormancy in crown buds of leafy spurge. Early response to mild dehydration also highlighted involvement of upstream ethylene and JA-signaling, whereas severe dehydration impacted ABA-signaling. The identification of conserved ABRE- and MYC-consensus, cis-acting elements in the promoter of leafy spurge genomic clones similar to Arabidopsis RVE1 (AT5G17300) implicates a potential role for ABA-signaling in its dehydration-induced expression. Response of these molecular mechanisms to dehydration-stress provides insights on the ability of invasive perennial weeds to adapt and survive under harsh environments, which will be beneficial for addressing future management practices.
      PubDate: 2014-11-01
  • Characterization of Arabidopsis Tubby-like proteins and redundant function
           of AtTLP3 and AtTLP9 in plant response to ABA and osmotic stress
    • Abstract: Tubby and Tubby-like proteins (TLPs) play essential roles in the development and function of mammal neuronal cells. In addition to the conserved carboxyl (C)-terminal Tubby domain, which is required for their plasma membrane (PM) tethering, plant TLPs also possess an amino (N)-terminal F-box domain to interact with specific Arabidopsis Skp1-like (ASK) proteins as functional SCF-type E3 ligases. Here, we report the molecular characterization of Arabidopsis TLPs (AtTLPs). β-Glucuronidase staining showed overlapped but distinct expression patterns of AtTLPs in Arabidopsis. Yeast two-hybrid assays further revealed that AtTLP1, AtTLP3, AtTLP6, AtTLP7, AtTLP9, AtTLP10 and AtTLP11 all interacted with specific ASKs, but AtTLP2, AtTLP5 and AtTLP8 did not. Subcellular localization observations in both Arabidopsis protoplasts and tobacco pollen tubes indicated that all GFP-AtTLP fusion proteins, except GFP-AtTLP8 which lacks the conserved phosphatidylinositol 4,5-bisphosphate binding sites, were targeted to the PM. Detailed studies on AtTLP3 demonstrated that AtTLP3 is a PM-tethered PIP2 binding protein which functions redundantly with AtTLP9 in abscisic acid (ABA)- and osmotic stress-mediated seed germination. Our results suggest that AtTLPs possibly work in multiple physiological and developmental processes in Arabidopsis, and AtTLP3 is also involved in ABA signaling pathway like AtTLP9 during seed germination and early seedling growth.
      PubDate: 2014-11-01
  • A novel method to identify the DNA motifs recognized by a defined
           transcription factor
    • Abstract: The interaction between a protein and DNA is involved in almost all cellular functions, and is vitally important in cellular processes. Two complementary approaches are used to detect the interactions between a transcription factor (TF) and DNA, i.e. the TF-centered or protein–DNA approach, and the gene-centered or DNA–protein approach. The yeast one-hybrid (Y1H) is a powerful and widely used system to identify DNA–protein interactions. However, a powerful method to study protein–DNA interactions like Y1H is lacking. Here, we developed a protein–DNA method based on the Y1H system to identify the motifs recognized by a defined TF, termed TF-centered Y1H. In this system, a random short DNA sequence insertion library was generated as the prey DNA sequences to interact with a defined TF as the bait. Using this system, novel interactions were detected between DNA motifs and the AtbZIP53 protein from Arabidopsis. We identified six motifs that were specifically bound by AtbZIP53, including five known motifs (DOF, G-box, I-box, BS1 and MY3) and a novel motif BRS1 [basic leucine zipper (bZIP) Recognized Site 1]. The different subfamily bZIP members also recognize these six motifs, further confirming the reliability of the TF-centered Y1H results. Taken together, these results demonstrated that TF-centered Y1H could identify quickly the motifs bound by a defined TF, representing a reliable and efficient approach with the advantages of Y1H. Therefore, this TF-centered Y1H may have a wide application in protein–DNA interaction studies.
      PubDate: 2014-11-01
  • RNAi-directed downregulation of betaine aldehyde dehydrogenase 1 ( OsBADH1
           ) results in decreased stress tolerance and increased oxidative markers
           without affecting glycine betaine biosynthesis in rice ( Oryza sativa )
    • Abstract: As an important osmoprotectant, glycine betaine (GB) plays an essential role in resistance to abiotic stress in a variety of organisms, including rice (Oryza sativa L.). However, GB content is too low to be detectable in rice, although rice genome possesses several orthologs coding for betaine aldehyde dehydrogenase (BADH) involved in plant GB biosynthesis. Rice BADH1 (OsBADH1) has been shown to be targeted to peroxisome and its overexpression resulted in increased GB biosynthesis and tolerance to abiotic stress. In this study, we demonstrated a pivotal role of OsBADH1 in stress tolerance without altering GB biosynthesis capacity, using the RNA interference (RNAi) technique. OsBADH1 was ubiquitously expressed in different organs, including roots, stems, leaves and flowers. Transgenic rice lines downregulating OsBADH1 exhibited remarkably reduced tolerance to NaCl, drought and cold stresses. The decrease of stress tolerance occurring in the OsBADH1-RNAi repression lines was associated with an elevated level of malondialdehyde content and hydrogen peroxidation. No GB accumulation was detected in transgene-positive and transgene-negative lines derived from heterozygous transgenic T0 plants. Moreover, transgenic OsBADH1-RNAi repression lines showed significantly reduced seed set and yield. In conclusion, the downregulation of OsBADH1, even though not causing any change of GB content, was accounted for the reduction of ability to dehydrogenate the accumulating metabolism-derived aldehydes and subsequently resulted in decreased stress tolerance and crop productivity. These results suggest that OsBADH1 possesses an enzyme activity to catalyze other aldehydes in addition to betaine aldehyde (the precursor of GB) and thus alleviate their toxic effects under abiotic stresses.
      PubDate: 2014-11-01
  • The pineapple AcMADS1 promoter confers high level expression in tomato and
           Arabidopsis flowering and fruiting tissues, but AcMADS1 does not
           complement the tomato LeMADS-RIN ( rin ) mutant
    • Abstract: A previous EST study identified a MADS box transcription factor coding sequence, AcMADS1, that is strongly induced during non-climacteric pineapple fruit ripening. Phylogenetic analyses place the AcMADS1 protein in the same superclade as LeMADS-RIN, a master regulator of fruit ripening upstream of ethylene in climacteric tomato. LeMADS-RIN has been proposed to be a global ripening regulator shared among climacteric and non-climacteric species, although few functional homologs of LeMADS-RIN have been identified in non-climacteric species. AcMADS1 shares 67 % protein sequence similarity and a similar expression pattern in ripening fruits as LeMADS-RIN. However, in this study AcMADS1 was not able to complement the tomato rin mutant phenotype, indicating AcMADS1 may not be a functionally conserved homolog of LeMADS-RIN or has sufficiently diverged to be unable to act in the context of the tomato network of interacting proteins. The AcMADS1 promoter directed strong expression of the GUS reporter gene to fruits and developing floral organs in tomato and Arabidopsis thaliana, suggesting AcMADS1 may play a role in flower development as well as fruitlet ripening. The AcMADS1 promoter provides a useful molecular tool for directing transgene expression, particularly where up-regulation in developing flowers and fruits is desirable.
      PubDate: 2014-11-01
  • A nitrogen-dependent switch in the high affinity ammonium transport in
           Medicago truncatula
    • Abstract: Ammonium transporters (AMTs) are crucial for the high affinity primary uptake and translocation of ammonium in plants. In the model legume Medicago truncatula, the genomic set of AMT-type ammonium transporters comprises eight members. Only four genes were abundantly expressed in young seedlings, both in roots and shoots. While the expression of all AMTs in the shoot was not affected by the nitrogen availability, the dominating MtAMT1;1 gene was repressed by nitrogen in roots, despite that cellular nitrogen concentrations were far above deficiency levels. A contrasting de-repression by nitrogen was observed for MtAMT1;4 and MtAMT2;1, which were both expressed at intermediate level. Weak expression was found for MtAMT1;2 and MtAMT2;3, while the other AMTs were not detected in young seedlings. When expressed from their endogenous promoters, translational fusion proteins of MtAMT1;1 and MtAMT2;1 with green fluorescent protein were co-localized in the plasma membrane of rhizodermal cells, but also detected in cortical root layers. Both transporter proteins similarly functionally complemented a yeast strain that is deficient in high affinity ammonium transport, both at acidic and neutral pH. The uptake into yeast mediated by these transporters saturated with Km AMT1;1 = 89 µM and Km AMT2;1 = 123 µM, respectively. When expressed in oocytes, MtAMT1;1 mediated much larger 15N-ammonium uptake than MtAMT2;1, but NH4 + currents were only recorded for MtAMT1;1. These currents saturated with a voltage-dependent Km = 90 µM at −80 mV. The cellular localization and regulation of the AMTs suggests that MtAMT1;1 encodes the major high affinity ammonium transporter gene in low nitrogen grown young M. truncatula roots and despite the similar localization and substrate affinity, MtAMT2;1 appears functionally distinct and more important at higher nitrogen supply.
      PubDate: 2014-11-01
  • Analysis of BAC-end sequences in common bean ( Phaseolus vulgaris L.)
           towards the development and characterization of long motifs SSRs
    • Abstract: The increasing volume of genomic data on the Phaseolus vulgaris species have contributed to its importance as a model genetic species and positively affected the investigation of other legumes of scientific and economic value. To expand and gain a more in-depth knowledge of the common bean genome, the ends of a number of bacterial artificial chromosome (BAC) were sequenced, annotated and the presence of repetitive sequences was determined. In total, 52,270 BESs (BAC-end sequences), equivalent to 32 Mbp (~6 %) of the genome, were processed. In total, 3,789 BES-SSRs were identified, with a distribution of one SSR (simple sequence repeat) per 8.36 kbp and 2,000 were suitable for the development of SSRs, of which 194 were evaluated in low-resolution screening. From 40 BES-SSRs based on long motifs SSRs (≥trinucleotides) analyzed in high-resolution genotyping, 34 showed an equally good amplification for the Andean and for the Mesoamerican genepools, exhibiting an average gene diversity (H E) of 0.490 and 5.59 alleles/locus, of which six classified as Class I showed a H E ≥ 0.7. The PCoA and structure analysis allowed to discriminate the gene pools (K = 2, FST = 0.733). From the 52,270 BESs, 2 % corresponded to transcription factors and 3 % to transposable elements. Putative functions for 24,321 BESs were identified and for 19,363 were assigned functional categories (gene ontology). This study identified highly polymorphic BES-SSRs containing tri- to hexanucleotides motifs and bringing together relevant genetic characteristics useful for breeding programs. Additionally, the BESs were incorporated into the international genome-sequencing project for the common bean.
      PubDate: 2014-11-01
  • Seed-specific increased expression of 2S albumin promoter of sesame
           qualifies it as a useful genetic tool for fatty acid metabolic engineering
           and related transgenic intervention in sesame and other oil seed crops
    • Abstract: The sesame 2S albumin (2Salb) promoter was evaluated for its capacity to express the reporter gusA gene encoding β-glucuronidase in transgenic tobacco seeds relative to the soybean fad3C gene promoter element. Results revealed increased expression of gusA gene in tobacco seed tissue when driven by sesame 2S albumin promoter. Prediction based deletion analysis of both the promoter elements confirmed the necessary cis-acting regulatory elements as well as the minimal promoter element for optimal expression in each case. The results also revealed that cis-regulatory elements might have been responsible for high level expression as well as spatio-temporal regulation of the sesame 2S albumin promoter. Transgenic over-expression of a fatty acid desaturase (fad3C) gene of soybean driven by 2S albumin promoter resulted in seed-specific enhanced level of α-linolenic acid in sesame. The present study, for the first time helped to identify that the sesame 2S albumin promoter is a promising endogenous genetic element in genetic engineering approaches requiring spatio-temporal regulation of gene(s) of interest in sesame and can also be useful as a heterologous genetic element in other important oil seed crop plants in general for which seed oil is the harvested product. The study also established the feasibility of fatty acid metabolic engineering strategy undertaken to improve quality of edible seed oil in sesame using the 2S albumin promoter as regulatory element.
      PubDate: 2014-11-01
  • OsCYCP1;1, a PHO80 homologous protein, negatively regulates phosphate
           starvation signaling in the roots of rice ( Oryza sativa L.)
    • Abstract: Phosphorus is one of the most essential and limiting nutrients in all living organisms, thus the organisms have evolved complicated and precise regulatory mechanisms for phosphorus acquisition, storage and homeostasis. In the budding yeast, Saccharomyces cerevisiae, the modification of PHO4 by the PHO80 and PHO85 complex is a core regulation system. However, the existence and possible functions in phosphate signaling of the homologs of the PHO80 and PHO85 components in plants has yet to be determined. Here we describe the identification of a family of seven PHO80 homologous genes in rice named OsCYCPs. Among these, the OsCYCP1;1 gene was able to partially rescue the pho80 mutant strain of yeast. The OsCYCP1;1 protein was predominantly localized in the nucleus, and was ubiquitously expressed throughout the whole plant and during the entire growth period of rice. Consistent with the negative role of PHO80 in phosphate signaling in yeast, OsCYCP1;1 expression was reduced by phosphate starvation in the roots. This reduction was dependent on PHR2, the central regulator of phosphate signaling in rice. Overexpression and suppression of the expression of OsCYCP1;1 influenced the phosphate starvation signaling response. The inducible expression of phosphate starvation inducible and phosphate transporter genes was suppressed in the OsCYCP1;1 overexpression lines and was relatively enhanced in the OsCYCP1;1 RNAi plants by phosphate starvation. Together, these results demonstrate the role of PHO80 homologs in the phosphate starvation signaling pathway in rice.
      PubDate: 2014-10-15
  • Global changes in gene expression, assayed by microarray hybridization and
           quantitative RT-PCR, during acclimation of three Arabidopsis thaliana
           accessions to sub-zero temperatures after cold acclimation
    • Abstract: During cold acclimation plants increase in freezing tolerance in response to low non-freezing temperatures. This is accompanied by many physiological, biochemical and molecular changes that have been extensively investigated. In addition, plants of many species, including Arabidopsis thaliana, become more freezing tolerant during exposure to mild, non-damaging sub-zero temperatures after cold acclimation. There is hardly any information available about the molecular basis of this adaptation. Here, we have used microarrays and a qRT-PCR primer platform covering 1,880 genes encoding transcription factors (TFs) to monitor changes in gene expression in the Arabidopsis accessions Columbia-0, Rschew and Tenela during the first 3 days of sub-zero acclimation at −3 °C. The results indicate that gene expression during sub-zero acclimation follows a tighly controlled time-course. Especially AP2/EREBP and WRKY TFs may be important regulators of sub-zero acclimation, although the CBF signal transduction pathway seems to be less important during sub-zero than during cold acclimation. Globally, we estimate that approximately 5 % of all Arabidopsis genes are regulated during sub-zero acclimation. Particularly photosynthesis-related genes are down-regulated and genes belonging to the functional classes of cell wall biosynthesis, hormone metabolism and RNA regulation of transcription are up-regulated. Collectively, these data provide the first global analysis of gene expression during sub-zero acclimation and allow the identification of candidate genes for forward and reverse genetic studies into the molecular mechanisms of sub-zero acclimation.
      PubDate: 2014-10-14
  • A SNP in OsMCA1 responding for a plant architecture defect by deactivation
           of bioactive GA in rice
    • Abstract: Plant architecture directly affects biomass in higher plants, especially grain yields in agricultural crops. In this study, we characterized a recessive mutant, plant architecture determinant (pad), derived from the Oryza sativa ssp. indica cultivar MH86. The mutant exhibited severe dwarf phenotypes, including shorter and stunted leaves, fewer secondary branches during both the vegetative and reproductive growth stages. Cytological studies revealed that pad mutant growth defects are primarily due to the inhibition of cell expansion. The PAD gene was isolated using a map-based cloning strategy. It encodes a plasma membrane protein OsMCA1 and a SNP responsible for a single amino acid change was found in the mutant. PAD was universally expressed in rice tissues from the vegetative to reproductive growth stages, especially in seedlings, nodes and rachillae. Quantitative real-time PCR analysis revealed that the most of the genes responding to gibberellin (GA) metabolism were up-regulated in pad mutant internodes. The endogenous GA content measurement revealed that the levels of GA1 were significantly decreased in the third internode of pad mutants. Moreover, a GA response assay suggested that OsMCA1/PAD might be involved in the regulation of GA metabolism and signal transduction. Our results revealed the pad is a loss-of-function mutant of the OsMCA1/PAD, leading to upregulation of genes related to GA deactivation, which decreased bioactive GA levels.
      PubDate: 2014-10-12
  • A Rosa canina WUSCHEL-related homeobox gene, RcWOX1 , is involved in
           auxin-induced rhizoid formation
    • Abstract: Abstract Homeobox (HB) proteins are important transcription factors that regulate the developmental decisions of eukaryotes. WUSCHEL-related homeobox (WOX) transcription factors, known as a plant-specific HB family, play a key role in plant developmental processes. Our previous work has indicated that rhizoids are induced by auxin in rose (Rosa spp.), which acts as critical part of an efficient plant regeneration system. However, the function of WOX genes in auxin-induced rhizoid formation remains unclear. Here, we isolated and characterized a WUSCHEL-related homeobox gene from Rosa canina, RcWOX1, containing a typical homeodomain with 65 amino acid residues. Real-time reverse transcription PCR (qRT-PCR) analysis revealed that RcWOX1 was expressed in the whole process of callus formation and in the early stage of rhizoid formation. Moreover, its expression was induced by auxin treatment. In Arabidopsis transgenic lines expressing the RcWOX1pro::GUS and 35S::GFP-RcWOX1, RcWOX1 was specifically expressed in roots and localized to the nucleus. Overexpression of RcWOX1 in Arabidopsis increased lateral root density and induced upregulation of PIN1 and PIN7 genes. Therefore, we postulated that RcWOX1 is a functional transcription factor that plays an essential role in auxin-induced rhizoid formation.
      PubDate: 2014-10-10
  • Activation tagging of ATHB13 in Arabidopsis thaliana confers
           broad-spectrum disease resistance
    • Abstract: Abstract Powdery mildew species Oidium neolycopersici (On) can cause serious yield losses in tomato production worldwide. Besides on tomato, On is able to grow and reproduce on Arabidopsis. In this study we screened a collection of activation-tagged Arabidopsis mutants and identified one mutant, 3221, which displayed resistance to On, and in addition showed a reduced stature and serrated leaves. Additional disease tests demonstrated that the 3221 mutant exhibited resistance to downy mildew (Hyaloperonospora arabidopsidis) and green peach aphid (Myzus persicae), but retained susceptibility to bacterial pathogen Pseudomonas syringae pv tomato DC3000. The resistance trait and morphological alteration were mutually linked in 3221. Identification of the activation tag insertion site and microarray analysis revealed that ATHB13, a homeodomain-leucine zipper (HD-Zip) transcription factor, was constitutively overexpressed in 3221. Silencing of ATHB13 in 3221 resulted in the loss of both the morphological alteration and resistance, whereas overexpression of the cloned ATHB13 in Col-0 and Col-eds1-2 backgrounds resulted in morphological alteration and resistance. Microarray analysis further revealed that overexpression of ATHB13 influenced the expression of a large number of genes. Previously, it was reported that ATHB13-overexpressing lines conferred tolerance to abiotic stress. Together with our results, it appears that ATHB13 is involved in the crosstalk between abiotic and biotic stress resistance pathways.
      PubDate: 2014-10-08
  • Analysis of global gene expression profiles to identify differentially
           expressed genes critical for embryo development in        class="a-plus-plus">Brassica rapa
    • Abstract: Embryo development represents a crucial developmental period in the life cycle of flowering plants. To gain insights into the genetic programs that control embryo development in Brassica rapa L., RNA sequencing technology was used to perform transcriptome profiling analysis of B. rapa developing embryos. The results generated 42,906,229 sequence reads aligned with 32,941 genes. In total, 27,760, 28,871, 28,384, and 25,653 genes were identified from embryos at globular, heart, early cotyledon, and mature developmental stages, respectively, and analysis between stages revealed a subset of stage-specific genes. We next investigated 9,884 differentially expressed genes with more than fivefold changes in expression and false discovery rate ≤0.001 from three adjacent-stage comparisons; 1,514, 3,831, and 6,633 genes were detected between globular and heart stage embryo libraries, heart stage and early cotyledon stage, and early cotyledon and mature stage, respectively. Large numbers of genes related to cellular process, metabolism process, response to stimulus, and biological process were expressed during the early and middle stages of embryo development. Fatty acid biosynthesis, biosynthesis of secondary metabolites, and photosynthesis-related genes were expressed predominantly in embryos at the middle stage. Genes for lipid metabolism and storage proteins were highly expressed in the middle and late stages of embryo development. We also identified 911 transcription factor genes that show differential expression across embryo developmental stages. These results increase our understanding of the complex molecular and cellular events during embryo development in B. rapa and provide a foundation for future studies on other oilseed crops.
      PubDate: 2014-09-12
  • Genome-wide identification of housekeeping genes in maize
    • Abstract: In the wake of recent progress of high throughput transcriptome profiling technologies, extensive housekeeping gene mining has been conducted in humans. However, very few studies have been reported in maize (Zea mays L.), an important crop plant, and none were conducted on a genome -wide level. In this study, we surveyed housekeeping genes throughout the maize transcriptome using RNA-seq and microarray techniques, and validated the housekeeping profile with quantitative polymerase chain reaction (qPCR) under a series of conditions including different genotypes and nitrogen supplies. Seven microarray datasets and two RNA-seq libraries representing 40 genotypes at more than 20 developmental stages were selected to screen for commonly expressed genes. A total of 1,661 genes showed constitutive expression in both microarray and RNA-seq datasets, serving as our starting housekeeping gene candidates. To determine for stably expressed housekeeping genes, NormFinder was used to select the top 20 % invariable genes to be the more likely candidates, which resulted in 48 and 489 entries from microarray and RNA-seq data, respectively. Among them, nine genes (2OG-Fe, CDK, DPP9, DUF, NAC, RPN, SGT1, UPF1 and a hypothetical protein coding gene) were expressed in all 40 maize diverse genotypes tested covering 16 tissues at more than 20 developmental stages under normal and stress conditions, implying these as being the most reliable reference genes. qPCR analysis confirmed the stable expression of selected reference gene candidates compared to two widely used housekeeping genes. All the reference gene candidates showed higher invariability than ACT and GAPDH. The hypothetical protein coding gene exhibited the most stable expression across 26 maize lines with different nitrogen treatments with qPCR, followed by CDK encoding the cyclin-dependent kinase. As the first study to systematically screen for housekeeping genes in maize, we identified candidates by examining the transcriptome atlas generated from RNA-seq and microarray technologies. The nine top-ranked qPCR-validated novel housekeeping genes provide a valuable resource of reference genes for maize gene expression analysis.
      PubDate: 2014-09-11
  • New target carotenoids for CCD4 enzymes are revealed with the
           characterization of a novel stress-induced carotenoid cleavage dioxygenase
           gene from Crocus
    • Abstract: Apocarotenoid compounds play diverse communication functions in plants, some of them being as hormones, pigments and volatiles. Apocarotenoids are the result of enzymatic cleavage of carotenoids catalyzed by carotenoid cleavage dioxygenase (CCD). The CCD4 family is the largest family of plant CCDs, only present in flowering plants, suggesting a functional diversification associated to the adaptation for specific physiological capacities unique to them. In saffron, two CCD4 genes have been previously isolated from the stigma tissue and related with the generation of specific volatiles involved in the attraction of pollinators. The aim of this study was to identify additional CCD4 members associated with the generation of other carotenoid-derived volatiles during the development of the stigma. The expression of CsCCD4c appears to be restricted to the stigma tissue in saffron and other Crocus species and was correlated with the generation of megastigma-4,6,8-triene. Further, CsCCD4c was up-regulated by wounding, heat, and osmotic stress, suggesting an involvement of its apocarotenoid products in the adaptation of saffron to environmental stresses. The enzymatic activity of CsCCD4c was determined in vivo in Escherichia coli and subsequently in Nicotiana benthamiana by analyzing carotenoids by HPLC–DAD and the volatile products by GC/MS. β-Carotene was shown to be the preferred substrate, being cleaved at the 9,10 (9′,10′) bonds and generating β-ionone, although β-cyclocitral resulting from a 7,8 (7′,8′) cleavage activity was also detected at lower levels. Lutein, neoxanthin and violaxanthin levels in Nicotiana leaves were markedly reduced when CsCCD4c is over expressed, suggesting that CsCCD4c recognizes these carotenoids as substrates.
      PubDate: 2014-09-10
  • Transcriptome profiling of Vitis
    , an extremely cold-tolerant Chinese wild        class="a-plus-plus">Vitis species, reveals
           candidate genes and events that potentially connected to cold stress
    • Abstract: Vitis amurensis Rupr. is an exceptional wild-growing Vitis (grape) species that can safely survive a wide range of cold conditions, but the underlying cold-adaptive mechanism associated with gene regulation is poorly investigated. We have analyzed the physiochemical and transcriptomic changes caused by cold stress in a cold-tolerant accession, ‘Heilongjiang seedling’, of Chinese wild V. amurensis. We statistically determined that a total of 6,850 cold-regulated transcripts were involved in cold regulation, including 3,676 up-regulated and 3,174 down-regulated transcripts. A global survey of messenger RNA revealed that skipped exon is the most prevalent form of alternative spicing event. Importantly, we found that the total splicing events increased with the prolonged cold stress. We also identified thirty-eight major TF families that were involved in cold regulation, some of which were previously unknown. Moreover, a large number of candidate pathways for the metabolism or biosynthesis of secondary metabolites were found to be regulated by cold, which is of potential importance in coordinating cold tolerance with growth and development. Several heat shock proteins and heat shock factors were also detected to be intensively cold-regulated. Furthermore, we validated the expression profiles of 16 candidates using qRT-PCR to further confirm the accuracy of the RNA-seq data. Our results provide a genome-wide view of the dynamic changes in the transcriptome of V. amurensis, in which it is evident that various structural and regulatory genes are crucial for cold tolerance/adaptation. Moreover, our robust dataset advances our knowledge of the genes involved in the complex regulatory networks of cold stress and leads to a better understanding of cold tolerance mechanisms in this extremely cold-tolerant Vitis species.
      PubDate: 2014-09-05
School of Mathematical and Computer Sciences
Heriot-Watt University
Edinburgh, EH14 4AS, UK
Tel: +00 44 (0)131 4513762
Fax: +00 44 (0)131 4513327
About JournalTOCs
News (blog, publications)
JournalTOCs on Twitter   JournalTOCs on Facebook

JournalTOCs © 2009-2014